Sroan 有一个私人的保险箱,密码是 7 个 不同的数字。 Guess #1: 9062437 G...

생성일: 2025년 3월 10일

답변에 사용된 모델 O3 Mini by Chat01

질문

Sroan 有一个私人的保险箱,密码是 7 个 不同的数字。 Guess #1: 9062437 Guess #2: 8593624 Guess #3: 4286915 Guess #4: 3450982 Sroan 说: 你们 4 个人每人都猜对了位置不相邻的两个数字。 (只有 “位置及其对应的数字” 都对才算对) 问:密码是什么?

사고

Analyzing password clues

Okay, so the problem gives us four guesses, and Sroan says each guess has exactly two digits correctly placed, and they are not adjacent to each other. Each guess offers critical clues, and the task is to figure out the 7-digit password with distinct digits.

The digits of the password (a1, a2, a3, a4, a5, a6, a7) are drawn from the four guesses and don't repeat.

I'll break down the positioning clues from each guess one by one to figure out which digits match while respecting the adjacency rule.

Breaking down the guesses

Alright, we have four guesses, each providing exactly two digits in the correct positions, with the additional rule that these correct positions are not adjacent.

I’m carefully analyzing each guess, comparing it to the possible password positions, and making sure the non-adjacency rule holds.

So for each guess (Guess #1 to Guess #4), we check the positions where two digits are correct and not next to each other. I'll now carefully cross-check these insights against all the other guesses to find the password that fits all conditions.

Looking into column matches

Alright, I’m analyzing each column to find possible matches that satisfy the condition of having two correct digits in non-adjacent positions.

For column 5, both guesses 3 and 4 have the digit 9, making it a candidate for being correct if they share this position.

I’ll continue to check each column to see if there are any others that might allow consistent matching within the non-adjacency and exact position rules. For now, column 5 looks like it could be a consistent position across guesses.

Finalizing position matches

Alright, I’m carefully considering the non-adjacency and correctness of positions for each guess, with the constraint that digits must be unique. For each guess, I’ve narrowed down valid positions based on the remaining possibilities.

  • For guess 1 and 2, I’m testing positions from {2, 3, 4, 6, 7} for exact matches.
  • For guess 3 and 4, the non-adjacent rule limits possible additional correct positions to {1, 2, 3, 7}.

Now, I’ll check which configurations of positions from these sets yield valid and consistent answers when combined across all guesses.

Final position analysis

After looking at all the positions and applying the constraints, each position from {1, 2, 3, 4, 6, 7} is assigned exactly once in the correct guesses, with no overlap, except for p5 which we've already set as 9.

To satisfy the non-adjacency constraint, I've narrowed down the options for each guess and assigned positions to avoid conflicts. G3 and G4 extra both draw from {1,2,3,7}, ensuring that all positions align with the correct digits and the non-adjacency condition is maintained. Now, we can finalize whether the remaining guesses accept all these assignments.

None

Reasoned about password puzzle logic for 54 seconds

답변

我们可以设密码为 7 位数字:

p1  p2  p3  p4  p5  p6  p7p_1\;p_2\;p_3\;p_4\;p_5\;p_6\;p_7

已知条件:密码由 7 个互不相同的数字组成,而 Sroan 给出的四个猜测中,每个猜测“恰好”有两个位置上的数字既数字正确又位置正确(且这两个位置不相邻)。

四个猜测分别是:

  1. Guess#1: 9 0 6 2 4 3 7
  2. Guess#2: 8 5 9 3 6 2 4
  3. Guess#3: 4 2 8 6 9 1 5
  4. Guess#4: 3 4 5 0 9 8 2

注意:每个猜测只有当某一位置的数字与密码相同时才算“猜对”,而且每个猜测中这两个正确的位置不能相邻。

【关键观察】
比较各列数字发现:只有第 5 列中,Guess#3 与 Guess#4 都给出了“9”。若令 p5=9p_5 = 9,则这两人在第 5 位均猜对(而 5 位的两边是位置 4 和 6,所以其它正确位置必须避开 4 和 6)。因此我们可以确定

p5=9.p_5 = 9.

【进一步分析】
除第 5 位外,其余位置各猜测可能的正确“提示”如下(如果该猜测该位正确,则密码对应位置必须取猜测中的数字;反之则不相等):

  • Guess#1 (9062437):
    正确候选位置及要求:

    • pos2: p2=0p_2 = 0
    • pos3: p3=6p_3 = 6
    • pos4: p4=2p_4 = 2
    • pos6: p6=3p_6 = 3
    • pos7: p7=7p_7 = 7
      且必须选出两个,且这两个位置不相邻。
  • Guess#2 (8593624):
    候选:

    • pos1: p1=8p_1 = 8
    • pos2: p2=5p_2 = 5
    • pos4: p4=3p_4 = 3
    • pos6: p6=2p_6 = 2
    • pos7: p7=4p_7 = 4
      选出两个且不相邻。
  • Guess#3 (4286915):
    已知 pos5(9)必对;另需一个正确位置,但不能选 pos4 或 pos6(因为与 pos5 相邻),故候选只有:

    • pos1: p1=4p_1 = 4
    • pos2: p2=2p_2 = 2
    • pos3: p3=8p_3 = 8
    • pos7: p7=5p_7 = 5
  • Guess#4 (3450982):
    已知 pos5(9)必对;另需一个正确位置,且不能选 pos4 或 pos6,因此候选只有:

    • pos1: p1=3p_1 = 3
    • pos2: p2=4p_2 = 4
    • pos3: p3=5p_3 = 5
    • pos7: p7=2p_7 = 2

【分配思路】
注意到除 p₅ 外,其余 6 个位置必须“供”四个猜测给出正确数字。由于同一位置若被不同猜测认为正确,要求的数字又往往不同(除第 5 位外没有其他列出现重复数字),所以这 6 个位置中将正好有 4 个位置各被一个猜测选中(另外两个猜测——Guess#1 与 Guess#2——各自选出两个正确位置,但它们选出的必须不冲突,与 Guess#3 与 Guess#4 给出的额外位置(只能从 {1,2,3,7} 中选)一起恰好覆盖这 6 个位置)。

经过仔细分析(可以列举所有可能的分配情况),可以找到下面这样一种分配方案使得各猜测的要求同时满足,并且各位置得出的数字互不相同:

  • 令 Guess#3 的额外正确位置选 pos1,得到 p1=4p_1 = 4
  • 令 Guess#4 的额外正确位置选 pos3,得到 p3=5p_3 = 5
  • 剩下的 4 个位置为 {2,4,6,7} 分给 Guess#1 和 Guess#2。
    • 观察:在 Guess#1 的候选中 {2,3,4,6,7},而 Guess#2 的候选中为 {1,2,4,6,7};同时注意到只有 Guess#1 可选 pos3,但已被 Guess#4用掉,所以必须从剩下的中分配。
    • Guess#1 选 pos2 与 pos7
      • pos2: p2=0p_2 = 0(来自 Guess#1 的提示 “0”)
      • pos7: p7=7p_7 = 7(来自 Guess#1 的提示 “7”)
        两者位置 2 与 7 相距 5,符合不相邻要求。
    • 剩下 {4,6} 分配给 Guess#2
      • pos4: p4=3p_4 = 3(来自 Guess#2 的提示 “3”)
      • pos6: p6=2p_6 = 2(来自 Guess#2 的提示 “2”)
        位置 4 与 6相差2,也满足条件。

同时,已知 p5=9p_5 = 9

这样得到的密码为

p1p2p3p4p5p6p7=4  0  5  3  9  2  7.p_1\,p_2\,p_3\,p_4\,p_5\,p_6\,p_7 = 4\;0\;5\;3\;9\;2\;7.

【验证各猜测】

  1. Guess#1 (9062437) 与密码 4 0 5 3 9 2 7:

    • 正确位置:pos2 (0) 与 pos7 (7);位置 2 与 7 不相邻。
    • 其它位数字均不匹配。
  2. Guess#2 (8593624) 与密码 4 0 5 3 9 2 7:

    • 正确位置:pos4 (3) 与 pos6 (2);位置 4 与 6 不相邻。
    • 其它位不匹配。
  3. Guess#3 (4286915) 与密码 4 0 5 3 9 2 7:

    • 正确位置:pos1 (4) 与 pos5 (9);位置 1 与 5 不相邻。
    • 其它位不匹配。
  4. Guess#4 (3450982) 与密码 4 0 5 3 9 2 7:

    • 正确位置:pos3 (5) 与 pos5 (9);位置 3 与 5 不相邻。
    • 其它位不匹配。

所有条件都满足。

答案:密码是 4053927.

이 Q&A 공유하기