一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时沿圆周出发相向爬行,爬行速度分别为5.5厘米/...

생성일: 2025년 2월 22일

답변에 사용된 모델 O1 by Chat01

질문

一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时沿圆周出发相向爬行,爬行速度分别为5.5厘米/秒和3.5厘米/秒。已知它们先爬行1秒后同时掉头,爬行3秒后再同时掉头,爬行5秒后再同时掉头······且爬行时间为连续奇数,则它们在多少秒之后相遇?

사고

Mapping the path

Mapping the journey

Tracking their movements

Mapping progress

I’m noticing the two ants start moving in opposite directions along a circle with half the circumference being 63 cm. Their speeds are 5.5 cm/s and 3.5 cm/s.

Mapping movement dynamics

Establishing the framework

Tracking their convergence

I’ve figured out that the ants are moving towards each other, reducing the distance at 2 cm/s. They would meet in 31.5 seconds without changing direction.

Assessing direction shifts

I’m mapping the effects of the ants' direction changes on their relative distance. The goal is for them to meet at the same point mod 126.

Tracking position shifts

Hmm, I’m piecing together the ants' positions after the initial second. The goal is to pinpoint a time T when their positions align modulo 126, factoring in direction changes.

Charting velocity shifts

I’m working through the ants' velocity changes in intervals, ensuring to track their positions modulo 126. The goal is to see if and where their paths converge.

Tracking velocity shifts

I’m observing how the ants' velocities swap every interval—odd and even intervals. Calculating start times for each interval, it’s interesting to see the repeating pattern emerge.

Mapping positions

I’m tracking how positions evolve during each interval, aiming to spot potential alignment at any point within the interval. This approach should refine our analysis as we proceed.

Calculating net shifts

I'm figuring out the overall shift for each ant after deploying intricate velocity and time equations. This helps pinpoint the exact meeting point.

Tracking positional shifts

I'm working through a linear function to track the positional shifts modulo 126, adjusting for boundary times. This helps spot where the ants meet within each interval.

Analyzing interval alignment

I’m assessing whether the ants meet within the initial interval through a modulo equation, then exploring the second interval with a similar method to determine their alignment.

Examining interval alignments

I’m thinking through the second and third intervals, testing integer solutions to see if the ants align within these periods. No solutions found in these intervals.

Tracking intervals

I’m piecing together the fourth and fifth intervals, testing integer values to see if the ants align. No solutions found in these intervals, so I’m working through next steps.

Analyzing solutions

I’m testing integer values in seventh and eighth intervals. No solutions emerged, confirming no meeting points in these intervals. Progress is clear, but solutions remain elusive.

Pinpointing meeting time

Confirming the ants meet at t=49 within the seventh interval. Testing other values didn’t yield any earlier solutions, solidifying t=49 as the first meeting time.

Reasoned for 1m 17s

답변

解析思路:

  1. 基本数据与符号约定:

    • 圆的周长 C=1.26C = 1.26 米,换算成厘米即 C=126C = 126 厘米。
    • 两只蚂蚁分别记为 AABB。它们从一条直径的两端出发,圆周半径对应的弧长为 6363 厘米,所以起始时两只蚂蚁在圆周上的“间隔”为 6363 厘米(模 126126)。
    • 蚂蚁 AA 的爬行速度:vA=5.5v_A = 5.5 厘米/秒;蚂蚁 BB 的爬行速度:vB=3.5v_B = 3.5 厘米/秒。
    • 根据题意,它们“相向”出发,且每隔若干秒同时掉头。掉头的时间间隔为连续的奇数秒:第一次爬行 1 秒后掉头,第二次爬行 3 秒后掉头,第三次爬行 5 秒后掉头,依此类推。
  2. 方向与区间划分:

    • 设从 t=0t=0 开始,时间被分割为若干区间,区间长度依次为奇数:1 秒、3 秒、5 秒、7 秒……
    • nn 个区间长度为 Tn=2n1T_n = 2n - 1 秒。
    • nn 个区间的起始时刻为 Sn  =  T1+T2++Tn1  =  1+3+5++(2(n1)1)  =  (n1)2. S_n \;=\; T_1 + T_2 + \cdots + T_{n-1} \;=\; 1 + 3 + 5 + \cdots + \bigl(2(n-1)-1\bigr) \;=\; (n-1)^2. 因此,第 nn 个区间是 [Sn,  Sn+Tn]=[(n1)2,  n2]\bigl[S_n,\;S_n + T_n\bigr] = \bigl[(n-1)^2,\;n^2\bigr]
  3. 速度的“翻转”规律:

    • 在第 1、3、5、…(奇数)号区间内,设蚂蚁 AA 速度为 +5.5+5.5 厘米/秒(沿“正向”),蚂蚁 BB 速度为 3.5-3.5 厘米/秒(沿“反向”),这是因为它们是“相向而行”。
    • 在第 2、4、6、…(偶数)号区间内,两只蚂蚁同时掉头,所以蚂蚁 AA 的速度变为 5.5-5.5,蚂蚁 BB 的速度变为 +3.5+3.5
    • 如此反复,每进入下一个区间时,二者同时翻转各自的方向。
  4. 引入“位置差”函数 D(t)D(t)

    • 为了判断它们是否相遇,我们只需考察它们在圆上的位置差是否为 00(取模 126126)。
    • 设初始时刻 t=0t=0 时,蚂蚁 AA 在圆周坐标 A(0)=0A(0) = 0,蚂蚁 BB 在圆周坐标 B(0)=63B(0) = 63。则初始位置差 D(0)=A(0)B(0)=063=6363(mod126). D(0) = A(0) - B(0) = 0 - 63 = -63 \equiv 63 \pmod{126}.
    • 在某一时间区间内(长度为 TnT_n),若蚂蚁 AA 速度为 vA,nv_{A,n},蚂蚁 BB 速度为 vB,nv_{B,n},则该区间内 D(t)  =  D(Sn)  +  (vA,nvB,n)(tSn)(再取模 126). D(t) \;=\; D\bigl(S_n\bigr)\;+\;\bigl(v_{A,n} - v_{B,n}\bigr)\,\bigl(t - S_n\bigr)\quad (\text{再取模 }126).
  5. 逐区间求解:
    先把“相向”与“掉头”对应的速度差列出来:

    • 奇数区间(1 秒、5 秒、9 秒…)时,  vAvB=5.5(3.5)=+9\;v_{A} - v_{B} = 5.5 - (-3.5) = +9 厘米/秒;
    • 偶数区间(3 秒、7 秒、11 秒…)时,  vAvB=5.53.5=9\;v_{A} - v_{B} = -5.5 - 3.5 = -9 厘米/秒。

    因此,D(t)D(t) 在各区间是“以 ±9\pm 9 的斜率”作线性变化,区间与区间交接时会“折线”一下。我们检查各区间内是否出现

    D(t)0  (mod  126) D(t)\equiv 0\;(\bmod\;126)

    的解。如果在某区间内(含端点)找到第一处满足条件的时间,即为它们的首次相遇。

    • 第 1 区间 [0,1][0,1]:斜率 +9+9

      D(t)=63+9t. D(t) = 63 + 9t.

      要满足 63+9t0(mod126)63 + 9t \equiv 0 \pmod{126},解得 t=7t=7(但 7[0,1]7\notin[0,1]),无解。

    • 第 2 区间 [1,4][1,4]:斜率 9-9,继续在上一个区间末值基础上计算:

      D(1)=63+9×1=72,D(t)=729(t1)=729t+9=819t. D(1) = 63 + 9\times 1 = 72,\quad D(t) = 72 - 9\,(t - 1) = 72 - 9t + 9 = 81 - 9t.

      检查 819t0(mod126)81 - 9t \equiv 0\pmod{126}[1,4][1,4] 内是否有解,结果无解。

      同理可算出 D(4)=45D(4)=45

    • 第 3 区间 [4,9][4,9]:斜率 +9+9

      D(4)=45,D(t)=45+9(t4)=9t+9. D(4)=45,\quad D(t) = 45 + 9\,(t - 4) = 9t + 9.

      检查 9t+90(mod126)9t+9 \equiv 0\pmod{126},在 [4,9][4,9] 无合适解,区间末 D(9)=90D(9)=90

    • 第 4 区间 [9,16][9,16]:斜率 9-9

      D(9)=90,D(t)=909(t9)=909t+81=1719t. D(9)=90,\quad D(t)=90 - 9\,(t-9)=90-9t+81=171-9t.

      检查 1719t0(mod126)171-9t \equiv 0\pmod{126},在 [9,16][9,16] 无解,区间末 D(16)=27D(16)=27

    • 第 5 区间 [16,25][16,25]:斜率 +9+9

      D(16)=27,D(t)=27+9(t16)=9t117. D(16)=27,\quad D(t)=27+9\,(t-16)=9t-117.

      检查 9t1170(mod126)9t-117\equiv 0\pmod{126},在 [16,25][16,25] 无解,区间末 D(25)=108D(25)=108

    • 第 6 区间 [25,36][25,36]:斜率 9-9

      D(25)=108,D(t)=1089(t25)=3339t. D(25)=108,\quad D(t)=108 - 9\,(t-25)=333 - 9t.

      无解于 [25,36][25,36],区间末 D(36)=9D(36)=9

    • 第 7 区间 [36,49][36,49]:斜率 +9+9

      D(36)=9,D(t)=9+9(t36)=9t315. D(36)=9,\quad D(t)=9 + 9\,(t-36)=9t-315.

      9t3150(mod126)9t-315 \equiv 0\pmod{126},即 9(t35)0(mod126)9(t-35)\equiv 0\pmod{126},可化为 t35=14kt-35 = 14k
      [36,49][36,49] 区间搜索满足的 tt,可取 k=1k=1t=49t=49。而 4949 正好是第 7 区间的结束时刻,也落在 [36,49][36,49] 的端点内。

    由此可知,它们在 t=49t=49 秒时首次满足 D(t)=0 (mod 126)D(t)=0 \ (\mathrm{mod}\ 126),即在圆周上首次相遇。


答:它们将在 49 秒后首次相遇。

이 Q&A 공유하기