在平面四边形ABCD中,AB = AC = CD = 1,\angle ADC = 30^{\cir...
생성일: 2025년 2월 11일
생성일: 2025년 2월 11일
在平面四边形ABCD中,AB = AC = CD = 1,\angle ADC = 30^{\circ},\angle DAB = 120^{\circ}。将\triangle ACD沿AC翻折至\triangle ACP,其中P为动点。 求二面角A - CP - B的余弦值的最小值
我们给出问题的一个解法概要,证明在满足
的平面四边形 中,把三角形 沿公共边 翻折(即绕 旋转)得到新平面内的三角形 (其中 为 经折叠后的像),那么在由两个面(面 和包含 的面 )沿公共边 形成的二面角(记作“”)中,其余弦值在所有可能的折叠状态中取到的最小值为
下面给出一种解法思路(详细计算略去部分繁杂代数步骤):
我们可以选取合适的坐标系,使得:
此时所有点均在 平面内。
将三角形 沿 翻折,就是以 为旋转轴,把 旋转一个角度 得到 。由于 在 轴上,旋转公式给
当 时,;当 时, 又回到 面内(只不过与 关于 对称)。
翻折后有两个面:
这两面沿公共边 相交,其二面角记作 (取其最小正值,其余弦为 )。
一种常用方法是:令
为公共边的单位向量,然后把面 内经过 的另一方向(例如 )以及面 内经过 的另一方向(例如 )分别投影到垂直于 的平面上。设
则二面角满足
经过一系列计算(细节见下面提示),可以证明最终可将 化为关于 的函数
注意到当 或 时,均落在原平面上,此时二面角为 (余弦值为1);而当 适中时,二面角达最大值,其余弦值达到最小值。
令 (其中 ),则问题转化为求函数
在 内的最小值。经过求导分析(细节略),可证明极值出现在
此时代入计算得
因此,二面角 的余弦值的最小值为
坐标选取与参数化。 如上所述,先在 平面内选取 的适当坐标,再写出 关于折叠角 的坐标。
构造投影向量。 令公共边 的单位向量 (计算可发现 ),然后令
化简与求导。 计算 及各自模长,得出 的表达式,然后将 记作 化简。对 求导并解方程 得 后代入求得最小值 。
故最终答案为
这就是题目的答案。
给定正整数 ,求最小的正数 ,使得对于任何 (),只要 ,就有 不大于 。
我们需要找出最小的正数 ,使得对于任意满足
且满足条件
都有
换句话说,我们要求在这些角的取值范围和约束下, 的最大可能值,然后取 为这个最大值。证明如下。
考虑由于条件和目标函数都具有对称性,直觉上当所有角相等时可能取到极值。设
则条件变为
即
此时由直角三角形的关系有
因此,
也就是说,当所有角都取 时,和恰为 。
为了证明在给定条件下 是上界,我们可以利用拉格朗日乘数法。令目标函数
约束条件为
引入拉格朗日乘数 ,构造拉格朗日函数
对每个 求偏导并令其为零,我们得到
注意到
因此对于每个 有
这说明 对于各个 都必须相等,从而必有
因此,对称情况(即所有角相等)是极值点。进一步分析可知此时取到的和为最大值。
综上所述,在所有满足
且 的情形下,有
而当所有角都取 时等号成立。
因此,所求的最小正数 为
求出同时满足如下条件的集合 S 的元素个数的最大值:(1) S 中的每个元素都是不超过 100 的正整数;(2) 对于 S 中任意两个不同的元素 a, b ,都存在 S 中的元素 c ,使得 a 与 c 的最大公约数等于 1,并且 b 与 c 的最大公约数也等于 1;(3) 对于 S 中任意两个不同的元素 a, b ,都存在 S 中异于a, b 的元素 d ,使得 a 与 d 的最大公约数大于 1,并且 b 与 d 的最大公约数也大于 1
Translating problem constraints
The problem asks to find the maximum size of a set S of positive integers (≤100) under three conditions:
I'm considering how to approach this setup!
Clarifying conditions on set S
The condition says that for any two distinct elements a and b in S, there must be an element c in S such that GCD(a, c) = GCD(b, c) = 1. It doesn’t specify c must be distinct, so c could equal a or b unless a > 1 (since GCD(a, a) = a, not 1). If a = 1, then GCD(1, 1) = 1, so possibly c could be 1 for any pair. But condition (3) complicates things when an element needs to have a GCD > 1 with both a and b.
Analyzing the structure of S
Condition (3) requires that for any two elements, there’s a third element d that shares a common factor with both. Condition (2) makes sure that these pairs have at least one coprime neighbor. So, the set S needs to balance these factors. I realize 1 can’t be in S because condition (3) would fail. S needs to have elements that share prime factors, but also need some that are coprime with both. This leads me to think about partitioning S by prime divisibility, or using small primes.
Examining possible structures for S
We want to maximize S while satisfying both conditions. Condition (2) requires coprimeness between pairs, and condition (3) requires common divisibility with a third element for each pair. Trying S as the set of all even numbers fails condition (2), but splitting S into numbers divisible by 2 and those divisible by 3 seems promising. If S includes multiples of small primes, we can satisfy both conditions for many elements. To maximize S, my guess is to use numbers with common small prime factors, like 2 and 3. Now, checking condition (3) could be the next step.
Maximizing S under the conditions
To maximize |S| while meeting the conditions, I’m considering the structure of S carefully. If I include numbers divisible by 2 or 3, it might fail condition (2) due to coprimeness issues. Condition (3) can be satisfied by elements divisible by small primes, but certain prime combinations constrain S’s size. For example, if the product of two primes exceeds 100, they can’t be in S together. Prime choices must align to ensure divisibility for condition (3). Two sets might help, but the prime number inclusion must be restricted.
Maximizing S under prime constraints
The idea is to maximize how many numbers go in S while satisfying the conditions. If I include numbers divisible by 2, 3, 5, 7, I also need to ensure coprimeness for condition (2). However, including larger primes complicates things due to condition (3).
To solve this, I suspect S should include numbers whose prime factors are limited to small primes like 2, 3, 5, and 7. Numbers less than 100 with such divisors could fit, but I need to ensure there’s always a coprime mediator and a common divisor mediator—this is tricky!
Assessing S's construction
The idea here is to create a set S composed of numbers whose prime factors are among {2,3,5,7} while ensuring conditions (2) and (3) hold. While the set looks promising, condition (2) presents an issue: if two numbers cover all these primes, no number coprime to both can exist within S, because only 1 would fit the requirement—but 1 is not allowed. This means I can't simply have all numbers with prime factors from {2,3,5,7}; some exclusions are necessary!
Warning: The response is not complete, would not consume credits.