格子點計算
생성일: 2025년 1월 18일
생성일: 2025년 1월 18일
Mapping the area
I’m analyzing the region enclosed by y = log2(x), the x-axis, and x = 61/2. This area spans from 1 to 61/2 on the x-axis, with y ranging from 0 to log2(x).
Adjusting my thinking
Note that for x in (0,1), log2(x) is negative, so the region above the x-axis and below log2(x) only starts from x = 1 onwards.
Breaking down the grid
I’m focusing on the interior grid points by noting 1 < a < 61/2 and 0 < b < log2(a). This results in a range of valid x coordinates from 2 to 30.
Shifting my approach
Focusing on integer y values where 1 <= b <= floor(log2(a))-1 ensures y is strictly less than log2(a), providing valid y coordinates for each integer x within the specified range.
Considering integer constraints
OK, let's think this through: I'm counting integers b such that b < log2(a). If log2(a) equals an integer, b ranges from 1 to that integer - 1; otherwise, b ranges just up to floor(log2(a)).
Mapping valid b values
I’m gathering info on valid b values for each a by checking if log2(a) is an integer. If it isn't, b ranges from 1 to floor(log2(a)).
Investigating integer b values
I'm digging into how valid b values for each a are determined by floor(log2(a)), checking if a is a power of 2, and counting solutions accordingly.
Identifying power of 2 intervals
Now I’m pinpointing integral intervals for a, specifically acceptable values like 2, 4, 8, and 16, to ensure b < log2(a). Each interval yields a specific number of valid solutions for b.
Mapping out valid solutions
I’m counting valid solutions for each a: for 3 to 16, I’m tallying integer b values that satisfy b < log2(a), which totals 29 solutions across all intervals.
Discovering solutions
I’m adding the valid integer b values for each non-power of 2 a, noting that as a approaches 30, the number of solutions increases, starting from 3 solutions for a=16.
Figuring out solutions
OK, let me see. For each a between 17 and 30, excluding powers of 2, I’m figuring out 4 valid integer b solutions. This approach gives a total of 56 solutions.
Analyzing partial sums
I’m piecing together the partial sums for each integer a, including 3 to 16 and 17 to 30, to reach a total of 34 valid integer solutions for b.
Thought about grid points in region for 27 seconds
題意是要找出「在下列三道邊界之間且不含邊界的有界區域中,有多少整數格點」:
由於 在 時為負值,和 之間不會形成「上方有空間」的區域,因此真正形成有界區域的 -範圍是從 開始,一直到 (約 30.5)。
我們要找的是「嚴格位於區域內」的整數點 ,也就是:
令 。
如果 正好是 2 的冪,即 ,則 為整數,故
共有 個可行的 。
如果 不是 2 的冪,則 表示
又因為 要嚴格小於 ,可行的最大整數 為 ,
因此
共有 個可行的 。
以下列出各 值所對應之可行 數量,然後加總:
將它們分批加總:
依序累加:
最終結果為 90。對照選項即為第 (3) 項。
Calculating distances
I’m working out distances from point A to three planes, each being 6. Using the plane equation, I identify normal vectors for each.
Equating distances
OK, let me see. By setting the given distance to 6, I’m piecing together equations like |4b + 3c - 2| = 30 and others for planes F2 and F3.
Understanding absolute values
I’m mapping out that |a + 2b + 2c + 2| = 18 and considering the signs of terms like 4b + 3c - 2.
Evaluating negative possibilities
Taking a closer look at the negative side, I align equations: 4b + 3c = -28 and 3b + 4c = -35, ensuring they fit the 6-distance requirement.
Solving the system
I’m solving 4b + 3c = -28 and 3b + 4c = -35 to find b and c. This solution beautifully aligns with the distance requirement of 6.
Thought about geometry and distance calculation for 15 seconds
解析:
題目給定空間中一點 (其中 ),且已知它到以下三個平面的距離皆為 6:
我們想求 。
一點 到平面 的距離為
以下將三平面轉寫成「」形式,並帶入 的距離條件各為 6。
改寫為
其法向量為 ,長度 。
到此平面的距離為 6,故
由於 ,大概率使得 為負,因此令
改寫為
其法向量為 ,長度 。
到此平面的距離為 6,故
同樣因 ,很可能
以消去法求解:
因此
改寫為
其法向量為 ,長度 。
到此平面的距離為 6,故
將 與 代入得到
因此 . 因為題意指出 ,故取
得到
三者皆確實小於 0。
最後
答案: 。