矩阵不变因子与Smith标准形

생성일: 2025년 1월 5일

답변에 사용된 모델 O1 by Chat01

질문

求矩阵 A(λ)=[λ2+λ000λ000(λ+1)2]A(\lambda) = \begin{bmatrix} \lambda^2 + \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & (\lambda + 1)^2 \end{bmatrix} 的不变因子与 Smith 标准形。

사고

Mapping the matrix

I’m starting with the matrix A(λ)A(\lambda) and examining its diagonal entries: λ2+λ\lambda^2 + \lambda, λ\lambda, and (λ+1)2(\lambda + 1)^2. Next, I’ll find the greatest common divisors (GCDs) of each minor to determine the invariant factors.

Calculating the gcd

I’m determining the gcd of diagonal entries λ2+λ\lambda^2 + \lambda, λ\lambda, and (λ+1)2(\lambda + 1)^2. Factoring out λ\lambda and analyzing prime factors, the gcd is λ\lambda.

Adjusting my approach

I’m rethinking the gcd of 2x2 minors for the Smith normal form. The matrix is diagonal, so the minors are the product of two diagonal entries. Thus, the gcd is λ(λ+1)\lambda(\lambda+1).

Identifying commonalities

I’m working through the gcd of the 2x2 minors λ2(λ+1)\lambda^2(\lambda+1), λ(λ+1)3\lambda(\lambda+1)^3, and λ(λ+1)2\lambda(\lambda+1)^2, identifying λ(λ+1)2\lambda(\lambda+1)^2 as the gcd.

Confirming gcd alignment

Revisiting the gcd of λ2(λ+1)\lambda^2(\lambda+1), λ(λ+1)3\lambda(\lambda+1)^3, and λ(λ+1)2\lambda(\lambda+1)^2 reveals the gcd as λ(λ+1)\lambda(\lambda+1), ensuring the gcd product matches the matrix's determinant.

Calculating Smith normal form

I'm calculating the Smith normal form by determining gcds for 1x1, 2x2, and 3x3 minors. The 3x3 minor, the determinant, is divided by the product of the previous gcds.

Thought about 矩阵不变因子和Smith标准形 for 24 seconds

답변

解答思路概述

给定

A(λ)=[λ2+λ000λ000(λ+1)2],A(\lambda) = \begin{bmatrix} \lambda^2 + \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & (\lambda + 1)^2 \end{bmatrix},

我们要求其不变因子(invariant factors)以及对应的 Smith 标准形 (Smith normal form)。在多项式环 C[λ]\mathbb{C}[\lambda](或 K[λ]\mathbb{K}[\lambda],假设系数域为某个域)中,Smith 标准形是一个对角矩阵

diag(d1(λ),d2(λ),d3(λ)),\mathrm{diag}\bigl(d_1(\lambda),\,d_2(\lambda),\,d_3(\lambda)\bigr),

其中每个 di(λ)d_i(\lambda) 多项式均整除后一个,即

d1(λ)    d2(λ)    d3(λ).d_1(\lambda)\;\bigm|\;d_2(\lambda)\;\bigm|\;d_3(\lambda).

令原对角元分别为

a1(λ)=λ2+λ=λ(λ+1),a2(λ)=λ,a3(λ)=(λ+1)2.a_1(\lambda) = \lambda^2 + \lambda = \lambda(\lambda + 1),\quad a_2(\lambda) = \lambda,\quad a_3(\lambda) = (\lambda + 1)^2.

因为 A(λ)A(\lambda) 已经是对角形式,所以它的一切顺序主子式(即行列式的各种子式)都可以通过这些对角元的乘积来方便计算。


第 1 步:求 d1(λ)d_1(\lambda)

d1(λ)d_1(\lambda) 是所有 1×11\times 1 主子式的 最大公因数(gcd)。所有的 1×11\times 1 主子式其实就是对角上的这三个多项式本身:

λ(λ+1),λ,(λ+1)2.\lambda(\lambda+1),\quad \lambda,\quad (\lambda+1)^2.

它们的最大公因数为

gcd(λ(λ+1),  λ,  (λ+1)2).\gcd\bigl(\lambda(\lambda+1),\;\lambda,\;(\lambda+1)^2\bigr).
  • λ(λ+1)\lambda(\lambda+1) 含因子 λ\lambdaλ+1\lambda+1
  • λ\lambda 只含因子 λ\lambda
  • (λ+1)2(\lambda+1)^2 只含因子 λ+1\lambda+1

显然,这三个多项式的公共因子只能是常数多项式 11,因此

d1(λ)=1.d_1(\lambda) = 1.

第 2 步:求 d2(λ)d_2(\lambda)

d2(λ)d_2(\lambda) 与所有 2×22\times 2 主子式有关,具体来说

d2(λ)  =  gcd(全部 2×2 主子式)d1(λ).d_2(\lambda) \;=\;\frac{\gcd(\text{全部 }2\times 2\text{ 主子式})}{d_1(\lambda)}.

由于 d1(λ)=1d_1(\lambda) = 1,我们只需要计算所有 2×22\times 2 主子式的 gcd。

矩阵是对角的,任取两个不同的对角元素,得到的 2×22\times 2 主子式的行列式就是这两个对角元的乘积。故所有的 2×22\times 2 主子式为:

  1. λ(λ+1)λ=λ2(λ+1)\lambda(\lambda+1)\cdot \lambda = \lambda^2(\lambda+1).
  2. λ(λ+1)(λ+1)2=λ(λ+1)3\lambda(\lambda+1)\cdot (\lambda+1)^2 = \lambda(\lambda+1)^3.
  3. λ(λ+1)2=λ(λ+1)2\lambda \cdot (\lambda+1)^2 = \lambda(\lambda+1)^2.

我们要取这三个多项式的 gcd:

gcd(λ2(λ+1),  λ(λ+1)3,  λ(λ+1)2).\gcd\bigl(\,\lambda^2(\lambda+1),\;\lambda(\lambda+1)^3,\;\lambda(\lambda+1)^2\bigr).

分别写出它们的因子情况:

  • λ2(λ+1)1\lambda^2(\lambda+1)^1.
  • λ1(λ+1)3\lambda^1(\lambda+1)^3.
  • λ1(λ+1)2\lambda^1(\lambda+1)^2.

对于 λ\lambda,最小指数是 11
对于 λ+1\lambda+1,最小指数是 11
故其最大公因数为

λ1(λ+1)1  =  λ(λ+1).\lambda^1 \,(\lambda+1)^1 \;=\;\lambda(\lambda+1).

于是

d2(λ)  =  λ(λ+1)d1(λ)  =  λ(λ+1).d_2(\lambda) \;=\; \frac{\lambda(\lambda+1)}{d_1(\lambda)} \;=\; \lambda(\lambda+1).

第 3 步:求 d3(λ)d_3(\lambda)

d3(λ)d_3(\lambda) 与所有 3×33\times 3 主子式相关,但 A(λ)A(\lambda)3×33\times 3 矩阵,故只有整个行列式这一种 3×33\times 3 主子式。首先计算 detA(λ)\det A(\lambda)

detA(λ)=(λ(λ+1))    λ    (λ+1)2=λ2(λ+1)3.\det A(\lambda) = \bigl(\lambda(\lambda+1)\bigr)\;\cdot\;\lambda\;\cdot\;(\lambda+1)^2 = \lambda^2 \,(\lambda+1)^3.

然后用公式

d3(λ)=gcd(全部 3×3 主子式)d1(λ)d2(λ)=detA(λ)d1(λ)d2(λ)=λ2(λ+1)31λ(λ+1)=λ1(λ+1)2=λ(λ+1)2.d_3(\lambda) = \frac{\gcd(\text{全部 }3\times 3\text{ 主子式})}{d_1(\lambda)\cdot d_2(\lambda)} = \frac{\det A(\lambda)}{d_1(\lambda)\cdot d_2(\lambda)} = \frac{\lambda^2 (\lambda+1)^3}{1 \cdot \lambda(\lambda+1)} = \lambda^1 (\lambda+1)^2 = \lambda(\lambda+1)^2.

最终结果

  1. 不变因子 (invariant factors)
d1(λ)=1,d2(λ)=λ(λ+1),d3(λ)=λ(λ+1)2,d_1(\lambda) = 1, \quad d_2(\lambda) = \lambda(\lambda+1), \quad d_3(\lambda) = \lambda(\lambda+1)^2,

且满足

1    λ(λ+1)    λ(λ+1)2.1 \;\bigm|\; \lambda(\lambda+1) \;\bigm|\; \lambda(\lambda+1)^2.
  1. Smith 标准形 (Smith normal form)
S(λ)=[d1(λ)000d2(λ)000d3(λ)]=[1000λ(λ+1)000λ(λ+1)2].S(\lambda) = \begin{bmatrix} d_1(\lambda) & 0 & 0 \\ 0 & d_2(\lambda) & 0 \\ 0 & 0 & d_3(\lambda) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda(\lambda+1) & 0 \\ 0 & 0 & \lambda(\lambda+1)^2 \end{bmatrix}.

这就是矩阵 A(λ)A(\lambda) 的不变因子以及对应的 Smith 标准形。

이 Q&A 공유하기