Отношение объемов газа
생성일: 2024년 12월 31일
생성일: 2024년 12월 31일
Analyzing gas compression
I'm curious about an ideal monoatomic gas undergoing isobaric compression. Let's see, the heat removed is thrice the work of compression. I need to find the volume ratio β = V1/V2.
Understanding degrees of freedom
Let me see. For a monoatomic gas, degrees of freedom f=3 gives Cv = 3/2 R and Cp = 5/2 R. Then I’m mapping out the isobaric compression, highlighting pressure and temperature changes.
Assessing heat transfer
OK, let's think it through: with isobaric compression, the removed heat is negative due to decreasing temperature, leading to a symbolic expression for the ratio.
Focusing on adherence
The problem states Q_{1-2, отв} is the magnitude of heat removed. T2 = T3 suggests examining internal energy changes during the compression to understand the energy transfer.
Connecting temperature and volume
In an isobaric process, temperature and volume are linked: T2 = T1 * (V2 / V1). The heat removed, Q(1->2), is given by a specific formula focused on temperature changes.
Clarifying energy dynamics
OK, let's break this down: from 2 to 3, the gas's temperature stays steady. The positive external work results in the gas releasing heat, which heats the surroundings.
Releasing heat
A positive work input in an ideal gas results in a negative heat transfer. Since the energy change is zero, the gas is releasing heat, consistent with the problem's signs and absolute values.
Adjusting my approach
I'm focusing on magnitudes and signs. The absolute value of Q(1->2) is three times A(2->3). This leads me to explore the ratios thoughtfully.
Connecting temperature and energy
Interestingly, if T2 equals T3 in an ideal gas, internal energy change becomes zero. This implies the gas's temperature remains constant during compression, simplifying the analysis of heat and work.
Mapping out temperature transitions
I’m digging into the relationship between initial, final, and transition states. Using β, I see that T2 and T3 diminish with increasing β, assuming ideal gas behavior and holding T1 constant.
Working through heat and pressure
I’m pulling together the heat removed from the gas (Q(1->2)) and the work done on the gas (A(2->3)). This involves understanding the interplay of P and V.
Calculating work
I'm figuring out the work A(2->3) from the environment on the gas during compression, which is the negative of the system's work. Now, I need the function P(V) for this.
Piecing together average pressure
I’m mapping out the average pressure as (P2 + P3)/2. Then, I calculate the work on the gas during compression using this average pressure and volume change.
Applying the ideal gas law
Interestingly enough, A(2->3) can be expressed via R, T, V2, and V3. Using β and T2, P2 and P3 are calculated, showing clear progress in understanding the gas dynamics.
Refining the formula
OK, I’m working through the expression for A(2->3) by canceling terms and simplifying. This leads me to a neat formula for the work done on the gas during compression.
Assessing energy transfer
OK, let’s look at how the heat transferred (Q_{1->2, отв}) aligns with the work done (A_{2->3}). This balance is fascinating, given the energy and volume relationships.
Balancing energy exchange
I'm figuring out the energy transferred versus the work done, focusing on the volume ratio and initial temperature, to ensure they match the conditions given.
Balancing terms
I’m aligning the energy transferred with the work done, factoring out common elements. This helps me find relationships and solve for unknowns like β effectively.
Thought about термодинамические процессы газа por 40 segundos
Ниже приведён пошаговый разбор решения. Итоговый ответ:
Нужно найти .
Для одноатомного идеального газа:
Из условия следует, что изменение внутренней энергии за процесс 2→3 равно нулю:
Здесь есть работа газа (по знаку обычно ), а работа над газом .
Итого,
Поскольку идёт сжатие, , то работа над газом будет положительной.
Давление при переходе 2→3 линейно меняется от до . Если изобразить как отрезок прямой, то работа (по модулю работы газа) равна площади трапеции:
Тогда работа над газом
На состояниях 2 и 3 по уравнению состояния:
Но . Значит,
Тогда
А
Подставляя это в выражение для :
Но . Тогда
и
Следовательно,
Так как , подставляем:
Удобнее раскрыть произведение .
Заметим, что
Тогда
(Можно было сразу сократить факторы — итог один.)
Из предыдущих формул:
Подставляем в соотношение
Сократив общий множитель (он отличен от нуля), получаем:
Раскроем скобки:
Левая часть:
Правая часть:
(;3\Bigl(1 - \tfrac{1}{\beta^2}\Bigr)
= 3,\frac{\beta^2 - 1}{\beta^2}
= 3,\frac{(\beta - 1)(\beta + 1)}{\beta^2}.)
Таким образом,
Полагая (иначе смысла в задаче нет), делим обе части на . Тогда:
Раскрываем справа:
Таким образом, искомое отношение объёмов равно .