密码推理解析

作成日: 2025年1月28日

使用モデル O1 by Chat01

質問

Sroan 有一个私人的保险箱,密码是 7 个 不同的数字。 Guess #1: 9062437 Guess #2: 8593624 Guess #3: 4286915 Guess #4: 3450982 Sroan 说: 你们 4 个人每人都猜对了位置不相邻的两个数字。 (只有 “位置及其对应的数字” 都对才算对) 问:密码是什么?

思考

Reinterpreting the scenario

Each guess has two correct digits in the correct positions, with non-overlapping and non-adjacent positions. This uniqueness challenges conventional clustering assumptions.

Pinpointing the solution

OK, let me see. Each guess has two correct digits in the right spots, exclusively non-adjacent. The unique pattern of correct digits is key to solving this.

Tackling the puzzle

I'm thinking about a combinational method to spot two non-adjacent correct digits per guess, focusing on logical positioning to decode the 7-digit password.

Mapping out valid pairs

I’m figuring out all non-adjacent digit pairs for each guess, ensuring alignment with the 7-digit password. This approach keeps the puzzle manageable and ensures progress.

Identifying shared elements

I'm thinking about the total of 8 correct positions from 4 guesses, with only 7 positions available. This means one position is duplicated across two guesses.

Spotting repeated digits

I’m examining each guess position to find any shared digits. This helps narrow down the unique digit positions, ensuring the password has no adjacent duplicate digits.

Spotting a trend

I’m noticing that guess positions #3 and #4 both have the digit 9 in position 5. This leads me to think position 5 might be the shared correct position.

Pinpointing the correct digit

Hmm, this makes me think: position 5 must have digit 9, aligned with the lack of adjacent correct positions and pattern constraints.

Pinpointing digit 9

I’ve nailed digit 9 for position 5. Now I’m mapping out the remaining position options for guess #3, ensuring they align with the constraints of unique digits and no adjacency.

Piecing together clues

Identifying valid digits for positions 1, 2, 3, and 7 based on guess #4. Ensuring non-adjacency and unique digits aligns with constraints and avoids identical digits at adjacent spots.

Narrowing down

OK, let me see. We’ve ruled out position 9 for guesses #1 and #2. Now, we’re focusing on their non-adjacent positions, ensuring each guess has exactly two correct digits.

Charting non-adjacent outcomes

OK, I’m eliminating adjacent pairs for guess #1's correct positions. The valid positions for guess #1 are {1, 2, 6, 7}, ensuring exactly two non-adjacent correct digits.

Adjusting my approach

OK, let me see. I'm focusing on non-adjacent correct positions for guess #1, while excluding adjacent pairs and ensuring the removal of incorrect adjacent positions from guess #2.

Taking a closer look

I’m mapping out non-adjacent valid positions for guess #2, mindful to avoid any digit conflicts from guess #1, as each guess must uniquely contribute to the final password.

Narrowing down choices

I’m removing invalid pairs from guess #2 due to digit conflicts with guess #1. This ensures the final password remains consistent and unique, avoiding overlap of the digit 9.

Excluding invalid connections

I’m removing pairs from guess #1 due to digit conflicts with guess #2, ensuring the final password maintains unique, non-adjacent digits. This helps avoid overlaps and preserves digit integrity.

Pinpointing valid digits

Piecing together guess #3, I'm identifying position 5=9 and considering unique digits from {4, 2, 8, 5} in non-adjacent spots. This helps streamline the solution.

Mapping out options

I’m thinking through the valid pairs for guesses #1 and #2, ensuring no digit overlaps or conflicts, and each guess adheres to the non-adjacency rule and distinct digits.

Ensuring harmony

OK, I’m making sure the pairs chosen for guesses #1 and #2 don’t conflict. This keeps all digits distinct, avoiding contradictions in positions 2, 4, 6, and 7.

Spotting conflicts

I’m looking for conflicts between valid pairs from guesses #1 and #2, ensuring no digit overlaps or contradictions in positions 2, 4, 6, and 7. Progress is steady and thorough.

Identifying conflicts

I’m checking guess pairs for conflicts, ensuring each digit is unique. For instance, combinations like (A) and (2) cause a contradiction by assigning digit 2 to two distinct positions.

Evaluating combinations

I’m piecing together valid pairs from guesses #1 and #2, noting that combinations like (A) and (3) don’t cause digit conflicts. This keeps the password unique and consistent.

Evaluating possibilities

OK, I’m thinking through valid pairs from guesses #1 and #2, ensuring no digit conflicts. Combinations like (B,3) are promising, essentially so far.

Weighing combinations

I’m reasoning through guess pairs #1 and #2, testing for digit conflicts. Interestingly enough, combinations like (B,3) look promising, but it’s worth noting that other choices cause discrepancies, so they’re ruled out.

Piecing it together

I’m working through pairs from guesses #1 and #2, ensuring no digit conflicts. Combinations like (C,1) and (C,2) are promising, while others show discrepancies.

Mapping out combinations

Taking a closer look at pairs like (C,7) and (D,1), I’m ensuring no overlapping digits. This avoids paradoxes and maintains the uniqueness of each digit.

Focusing on digit constraints

Evaluating combinations like (D,3) and (D,6) to keep all digit assignments unique and ensure they fit within the non-adjacency rule. Progress is steady and requires careful verification.

Aligning possibilities

I'm working through pairs like (D,8) and (E,3), ensuring no digit conflicts. Each guess must stand on its own, maintaining uniqueness and fitting the non-adjacency rule.

Evaluating pairs

OK, I'm seeing that pairs like (E,4) and (E,5) work well. No digit conflicts or adjacency issues. This feels like solid progress towards the solution.

Cross-checking pairs

Pairs like (F,3) and (F,6) show promise. No digit overlaps or adjacency problems. This keeps pushing me towards a solution.

Evaluating options

I’m piecing together pairs like (G,5) and (G,6), but they hit conflicts and don’t fit. This shapes our solution to avoid digitate overlaps and ensure unique digit assignments.

Pulling together possibilities

I'm mapping out valid guess pairs, ensuring no digit conflicts. Pairs like (A,3) and (C,1) fit well, while others cause digit clashes, which are ruled out.

Confirming consistency

Taking a closer look at guess pairs (C,7) and (D,3). Each digit is distinct and the non-adjacency rule is followed, making them viable options.

Nailing down possibilities

Piecing together confirmed pairs from guesses #1 and #2, and adding pairs from guesses #3 and #4. Ensuring each digit matches the constraints and maintains non-adjacency.

Ensuring compatibility

I'm mapping out which pairs from guesses #1 and #2 align with the constraints for guesses #3 and #4. Each guess must uniquely contribute to the final password.

Mapping out valid pairs

I'm thinking about pairs like (B,3) and ensuring no digit conflicts. Each guess needs to uniquely contribute to the final password, avoiding overlaps and maintaining distinct digits.

Ensuring consistency

OK, let me see. I'm adjusting reasoning to ensure each guess adds unique digits to non-adjacent positions. Each guess pair is checked for digit conflicts, aiming for a distinct 7-digit password.

Identifying valid pairs

I’m piecing together valid guess pairs, ensuring no digit conflicts. Combinations like (C,7) with P1=4 look promising, while others cause conflicts and are ruled out.

Piecing together valid configurations

I'm working through valid guess pairs, ensuring they align with constraints. Pair (C,7) with P1=4 and P3=5 for guess #4 fits well, adding up to 7 distinct digits.

Confirming alignment

It's interesting to see that the partial assignment aligns with guess #4. The distinct digits and non-adjacent positions perfectly meet the constraints, wrapping up the solution neatly.

Confirming correctness

I’m verifying guess #2 and #3 align with the partial assignment. Both position-guess combinations are correct, non-adjacent, and distinct, meeting the criteria.

Ensuring alignment

OK, let me see if guesses #1, #2, and #3 match the final password constraints: distinct, non-adjacent digits. It’s interesting to see everything fits perfectly, solving the puzzle beautifully.

Confirming the solution

I’ve verified the final password constraints, including distinct, non-adjacent digits and exact correct positions. The final password is 4053927, neatly satisfying all criteria.

Thought about private safe password,持续 1m 59s

回答

下面给出一种比较简明的推理思路,最终可得到唯一答案 4053927


1. 题目要点

  1. Sroan 的密码是 7 个互不重复的数字
  2. 四个人的四次猜测(每次 7 位)如下:
    • 猜测1:9062437
    • 猜测2:8593624
    • 猜测3:4286915
    • 猜测4:3450982
  3. Sroan 说:每个人都恰好猜对了 2 个数字及其位置,并且这 2 个「对的位置」在各自的猜测中不相邻

我们用 P1P2P3P4P5P6P7P_1 P_2 P_3 P_4 P_5 P_6 P_7 表示真正的 7 位密码,各位数字两两不同。


2. 先锁定第 5 位一定是 9

观察四次猜测在第 5 位所填的数字:

  • 猜测1(9062437)的第 5 位是 4
  • 猜测2(8593624)的第 5 位是 6
  • 猜测3(4286915)的第 5 位是 9
  • 猜测4(3450982)的第 5 位是 9

由于总共有 4 次猜测、每次「恰好」对了 2 位,那么 4 次猜测共对了 4×2=84\times 2=8 个位置。但是真实密码只有 7 个位置,这意味必然有某个位置在至少两次猜测里都猜对了同一个数字。上面只有「第 5 位同时出现了数字 9」(出现在猜测3和猜测4) 符合此情况。

所以可以断定:

P5=9.P_5 = 9.

并且猜测3、猜测4 在「第 5 位」都猜对了,因此它们各自还需要再有且仅有 1 个其他位置猜对(且与第 5 位不相邻),即:

  • 猜测3:除第 5 位外,还需在 {1,2,3,7}\{1,2,3,7\} 中有且仅有 1 个位置正确。
  • 猜测4:除第 5 位外,还需在 {1,2,3,7}\{1,2,3,7\} 中有且仅有 1 个位置正确。

3. 排除「同一位出现两个 9」的可能

进一步看看猜测1、猜测2 的第 5 位都不是 9,所以它们的「2 个对的位置」绝不包含第 5 位

  • 猜测1:9062437
    其中第 1 位是 9。如果它猜对了第 1 位,就会导致密码第 1 位也是 9,但我们已经确定第 5 位是 9,密码的 7 位数字都不重复,不可能出现「两个位置都是 9」。
    因此,猜测1 的「对的 2 个位置」不能包括第 1 位,也不能包含第 5 位。

  • 猜测2:8593624
    其中第 3 位是 9。同理,如果它猜对第 3 位,就会与第 5 位同为 9,冲突。
    因此,猜测2 的「对的 2 个位置」也不能包括第 3 位,也不能包含第 5 位。

这样,猜测1 只能在 {2,3,4,6,7}\{2,3,4,6,7\} 这五个位置里选出 2 个「数字+位置」都正确;猜测2 只能在 {1,2,4,6,7}\{1,2,4,6,7\} 这五个位置里选出 2 个正确。


4. 穷举并配对猜测1、猜测2 的可能

为了满足「每个猜测正好 2 个对且不相邻」,我们先列出猜测1、猜测2 在各自可能正确的「两位组合」,再找能相互兼容的一组。

4.1 猜测1 的候选正确组合

猜测1:9062437
可用的位置是 2,3,4,6,7(对应数字 0,6,2,3,7),且 2 个正确的位置不能相邻。检查可行的成对位置(略去与第 1 位、第 5 位相邻的情况,或者数字重复的情况)后,可行的有比如:

  • (2,7) => 第 2 位=0、 第 7 位=7
  • (3,6) => 第 3 位=6、 第 6 位=3
  • (3,7) => 第 3 位=6、 第 7 位=7
  • (4,6) => 第 4 位=2、 第 6 位=3
  • (4,7) => 第 4 位=2、 第 7 位=7

  • 等等。我们会在与猜测2 的配合下逐一检验。

4.2 猜测2 的候选正确组合

猜测2:8593624
可用的位置是 1,2,4,6,7(对应数字 8,5,3,2,4),也不能相邻。可行的比如:

  • (1,4) => 第 1 位=8、 第 4 位=3
  • (1,7) => 第 1 位=8、 第 7 位=4
  • (4,6) => 第 4 位=3、 第 6 位=2
  • (2,7) => 第 2 位=5、 第 7 位=4

4.3 逐一配对,寻找能兼容且数字不冲突的组合

把猜测1 和猜测2 的可能组合两两“对表”,并排除会使同一位置出现两种不同数字,或者使两处位置出现相同数字(冲突)的情况,最终会得到若干组“还没有矛盾的部分赋值”。例如其中一组可行的是:

  • 猜测1 取 (2,7),即 P2=0,P7=7P_2=0,\, P_7=7
  • 猜测2 取 (4,6),即 P4=3,P6=2P_4=3,\, P_6=2

于是目前我们得到:

P2=0,P4=3,P5=9,P6=2,P7=7.P_2 = 0,\quad P_4 = 3,\quad P_5 = 9,\quad P_6 = 2,\quad P_7 = 7.

还没有确定的是 P1,P3P_1, P_3


5. 再让猜测3、猜测4 各自确定「另一正确位」

记得我们前面分析过:

  • 猜测3(4286915)已经确定第 5 位=9 是对的,还需要在 {1,2,3,7}\{1,2,3,7\} 中正好 1 个位置对。它在这些位置的数字分别是:1→4, 2→2, 3→8, 7→5。
  • 现在我们已有 P2=02,  P7=75P_2=0\neq 2,\; P_7=7\neq 5,所以只能从「P1=4P_1=4P3=8P_3=8」里选一个。
  • 同时密码的 7 个数字要互不重复,目前用掉的数字有 {0,2,3,7,9}\{0,2,3,7,9\},剩余可以用的数字是 {1,4,5,6,8}\{1,4,5,6,8\}……

如果我们令 P1=4P_1=4,那么猜测3 在第 1 位就对了(而第 1 与第 5 不相邻,符合条件),这正好满足它还需要再对 1 位的要求。

因此先把

P1=4P_1 = 4

赋值,看看是否能继续满足猜测4。


5.1 检查猜测4

猜测4(3450982)也确定第 5 位=9 对了,需要在 {1,2,3,7}\{1,2,3,7\} 里再对 1 位:

  • 第 1 位猜 3
  • 第 2 位猜 4
  • 第 3 位猜 5
  • 第 7 位猜 2

而此时我们已经有:

P1=4,  P2=0,  P4=3,  P5=9,  P6=2,  P7=7.P_1=4,\; P_2=0,\; P_4=3,\; P_5=9,\; P_6=2,\; P_7=7.

可见上面并没有与「猜测4 的 1,2,3,7 四位猜测数字」直接重合的。唯一还未确定的是 P3P_3。如果把

P3=5,P_3 = 5,

那么就恰好让「猜测4 的第 3 位=5」对上。这样猜测4 也满足“只对 2 位(第 3 与第 5) 且不相邻”。


6. 最终得到唯一可行的密码

由此,7 位都确定下来:

P1=4,P2=0,P3=5,P4=3,P5=9,P6=2,P7=7.P_1=4,\quad P_2=0,\quad P_3=5,\quad P_4=3,\quad P_5=9,\quad P_6=2,\quad P_7=7.

即密码是

4053927.\boxed{4053927}.

可以逐一核对四次猜测,每次恰好 2 个位置对而且那 2 个位置互不相邻,条件完全满足:

  1. 猜测1: 9062437
    • 真密码: 4053927
    • 只在第 2 位 (0) 和第 7 位 (7) 对,且位置 2、7 不相邻
  2. 猜测2: 8593624
    • 真密码: 4053927
    • 只在第 4 位 (3) 和第 6 位 (2) 对,且位置 4、6 不相邻
  3. 猜测3: 4286915
    • 真密码: 4053927
    • 只在第 1 位 (4) 和第 5 位 (9) 对,且位置 1、5 不相邻
  4. 猜测4: 3450982
    • 真密码: 4053927
    • 只在第 3 位 (5) 和第 5 位 (9) 对,且位置 3、5 不相邻

至此,一切条件吻合,且此解唯一。


结论

Sroan 的 7 位密码就是 4053927。

このQ&Aを共有