試手氣遊戲期望值

作成日: 2025年1月18日

使用モデル OpenAI 01 by OpenAI01

質問

假日市集有個攤位推出「試試手氣,定價480元的可愛玩偶最低只要240元」。規則為:
3. 顧客投擲一枚均勻硬幣至多5次,前3次連續擲得3個正面者則只需以240元購得一個玩偶;擲到第4次才累積得3個正面者則只需以320元購得一個;擲到第5次才累積得3個正面者則只需以400元購得一個;5次投完仍未累積3個正面者則只能以480元購得一個。參與此遊戲的顧客購得一個玩偶所花金額的期望值為

思考

Evaluating expected outcomes

I'm analyzing expected costs based on how soon 3 heads show up in 5 tosses: 240, 320, 400, or 480. Now I need to calculate E[X].

Clarifying event probabilities

I'm piecing together that events A_3, A_4, and A_5 denote getting 3 heads for the first time on the 3rd, 4th, and 5th tosses.

Examining the ambiguity

The phrase "前3次連續擲得3個正面者" could mean "the first 3 tosses are heads in a row." This makes me think the probability for event E1 is 1/8.

Assessing coin toss odds

I'm working through calculating the probability of getting exactly 2 heads in the first 3 tosses, followed by a head on the 4th toss, which equals 3/16.

Calculating probabilities

I'm piecing together the probability of getting exactly 2 heads in the first 4 tosses and then a head on the 5th toss, which is 3/16. Noticing the exclusion of earlier heads.

Ensuring accurate probabilities

I determined that the probability for event E2 is 3/16, confirming 3 heads in the first 3 tosses and a head on the 4th.

Assessing probabilities

I found the probability for event E3 is 3/16: precisely 2 heads in the first 4 tosses, then a head on the 5th, without earlier accumulations.

Breaking down probabilities

I determined that the probability of not achieving 3 heads in 5 tosses is 1/2. This entails considering 0 to 2 heads in 5 tosses.

Summing probabilities

I verified that the probability of achieving 3 heads in 5 tosses is 1/2, combining the outcomes of exactly 3, 4, or 5 heads.

Thought about投擲硬幣遊戲期望值 for 22 seconds

回答

先明確規則與事件的定義:

  • 若「前 3 次擲出的硬幣皆為正面」,則只需 240 元。
  • 否則繼續擲第 4 次,若「到第 4 次為止正面數累積滿 3 個」,則只需 320 元。
  • 否則繼續擲第 5 次,若「到第 5 次為止正面數累積滿 3 個」,則只需 400 元。
  • 若 5 次擲完仍無法累積 3 個正面,則需 480 元。

由於硬幣均勻,單次擲出正面或反面的機率均為 12\frac{1}{2}。定義下列事件:

  1. E1E_1:前 3 次的結果即出現 3 個正面
  2. E2E_2:前 3 次未出現 3 個正面,但到第 4 次時累積正面總數達 3
  3. E3E_3:前 4 次未出現 3 個正面,但到第 5 次時累積正面總數達 3
  4. E4E_4:5 次擲完仍無法累積 3 個正面

1. 計算各事件的機率

  • E1E_1:第 1、2、3 次皆為正面
    前 3 擲全正面的機率

    P(E1)=(12)3=18. P(E_1) = \left(\tfrac12\right)^3 = \tfrac{1}{8}.
  • E2E_2:第 4 次才累積到 3 個正面
    先決條件是「前 3 擲中只有 2 個正面(才能到第 4 擲才滿 3 個)」,再加上「第 4 擲為正面」:

    P(E2)=P(前 3 擲中有 2 個正面)×P(第 4 擲為正面)=(32)(12)3×12=318×12=316. P(E_2) = P(\text{前 3 擲中有 2 個正面}) \times P(\text{第 4 擲為正面}) = \binom{3}{2}\left(\tfrac12\right)^3 \times \tfrac12 = 3 \cdot \tfrac{1}{8} \times \tfrac12 = \tfrac{3}{16}.
  • E3E_3:第 5 次才累積到 3 個正面
    先決條件是「前 4 擲中只有 2 個正面」,再加上「第 5 擲為正面」:

    P(E3)=P(前 4 擲中有 2 個正面)×P(第 5 擲為正面)=(42)(12)4×12=6116×12=316. P(E_3) = P(\text{前 4 擲中有 2 個正面}) \times P(\text{第 5 擲為正面}) = \binom{4}{2}\left(\tfrac12\right)^4 \times \tfrac12 = 6 \cdot \tfrac{1}{16} \times \tfrac12 = \tfrac{3}{16}.
  • E4E_4:5 擲完仍無法累積 3 個正面
    其機率即是「以上三事件都沒發生」的補事件機率:

    P(E4)=1(P(E1)+P(E2)+P(E3))=1(18+316+316)=112=12. P(E_4) = 1 - \left(P(E_1) + P(E_2) + P(E_3)\right) = 1 - \left(\tfrac{1}{8} + \tfrac{3}{16} + \tfrac{3}{16}\right) = 1 - \tfrac{1}{2} = \tfrac{1}{2}.

2. 各事件對應的金額

  • E1E_1 對應金額 240240
  • E2E_2 對應金額 320320
  • E3E_3 對應金額 400400
  • E4E_4 對應金額 480480

3. 計算期望值

令隨機變數 XX 表示顧客最終支付的金額,則

E[X]=240P(E1)  +  320P(E2)  +  400P(E3)  +  480P(E4)=24018+320316+400316+48012.\begin{aligned} E[X] &= 240 \cdot P(E_1) \;+\; 320 \cdot P(E_2) \;+\; 400 \cdot P(E_3) \;+\; 480 \cdot P(E_4)\\[6pt] &= 240 \cdot \tfrac{1}{8} + 320 \cdot \tfrac{3}{16} + 400 \cdot \tfrac{3}{16} + 480 \cdot \tfrac{1}{2}. \end{aligned}

逐項計算:

  1. 240×18=30240 \times \tfrac{1}{8} = 30
  2. 320×316=320×316=20×3=60320 \times \tfrac{3}{16} = 320 \times \tfrac{3}{16} = 20 \times 3 = 60
  3. 400×316=25×3=75400 \times \tfrac{3}{16} = 25 \times 3 = 75
  4. 480×12=240480 \times \tfrac{1}{2} = 240

加總後:

E[X]=30+60+75+240=405.E[X] = 30 + 60 + 75 + 240 = 405.

因此,顧客購得一個玩偶所花金額的期望值為 405 元。

このQ&Aを共有