We are given that the joint pdf of X and Y is
fX,Y(x,y)=91(3−x)(2−y),0≤x≤3,0≤y≤2.
We wish to find
P(Y≥1∣X<2)=P(X<2)P(Y≥1 and X<2).
Step 1. Compute P(X<2)
The probability that X<2 is obtained by integrating the joint density over the region 0≤x<2 and 0≤y≤2:
P(X<2)=∫x=02∫y=0291(3−x)(2−y)dydx.
Integrate with respect to y:
∫y=02(2−y)dy.
Compute:
∫y=02(2−y)dy=[2y−2y2]02=(2(2)−222)−0=(4−2)=2.
Thus,
P(X<2)=91∫02(3−x)⋅2dx=92∫02(3−x)dx.
Now integrate with respect to x:
∫02(3−x)dx=[3x−2x2]02=(3(2)−222)−0=(6−2)=4.
So,
P(X<2)=92⋅4=98.
Step 2. Compute P(Y≥1 and X<2)
This probability is given by:
P(Y≥1,X<2)=∫x=02∫y=1291(3−x)(2−y)dydx.
Integrate with respect to y:
∫y=12(2−y)dy.
Compute:
∫y=12(2−y)dy=[2y−2y2]12.
Evaluate the antiderivative:
- At y=2: 2(2)−222=4−2=2.
- At y=1: 2(1)−212=2−21=23.
Thus, the result is:
2−23=21.
Therefore, we have:
P(Y≥1,X<2)=91∫02(3−x)⋅21dx=181∫02(3−x)dx.
We already computed ∫02(3−x)dx=4. Hence,
P(Y≥1,X<2)=181⋅4=184=92.
Step 3. Compute the Conditional Probability
Now, the conditional probability is:
P(Y≥1∣X<2)=P(X<2)P(Y≥1,X<2)=9892=82=41.
Final Answer
41