用中文回答问题,$v_n$弱收敛$v_a$,请利用Fatou引理或者控制收敛定理求$\liminf_...

Creato il: 12 maggio 2025

Risposto usando O3 da Chat01

Domanda

用中文回答问题,vnv_n弱收敛vav_a,请利用Fatou引理或者控制收敛定理求lim infn(R3vn2dx)2(R3va2dx)2\liminf_{n\to\infty}(\int_{\mathbb{R}^{3}}|\nabla v_n|^2dx)^2\geq(\int_{\mathbb{R}^{3}}|\nabla v_a|^2dx)^2,给出具体步骤

Pensiero

Considering weak convergence and L² norms

The user wants to apply Fatou's lemma or the dominated convergence theorem to compute a liminf inequality. My first step might involve using lower semicontinuity for the L² norm via Fatou. I need to consider that weak convergence implies a subsequence of ∇v_n converges almost everywhere. I’m also dealing with unbounded ℝ³, where H¹ doesn’t embed into L² — but I can work with finite measure sets using Rellich's embedding. Subsequence extraction, too—though it's tricky!

Working through the liminf inequality

I want to borrow the fact that the functional f→ ∫ |∇u|² is weakly lower semicontinuous in H¹. I can prove this using Fatou's lemma maybe via Fourier coefficients.

Here’s a possible breakdown:

  1. Since v_n ⇀ v_a in H¹(ℝ³), we know ∇v_n ⇀ ∇v_a in L².
  2. Define f_n(x) = |∇v_n(x)|².
  3. Using Fatou’s lemma: ∫ g dx ≤ liminf ∫ f_n dx.

I want to show g(x) ≥ |∇v_a(x)|² a.e., which follows from weak convergence plus convexity. Still, I need to confirm this!

Thought for 1m 15s

Risposta

下面给出 两种常用做法,都能得到所需的

  lim infn(R3 ⁣vn2dx)2    (R3 ⁣va2dx)2  \boxed{\; \displaystyle \liminf_{n\to\infty}\Bigl(\int_{\mathbb{R}^{3}}\!|\nabla v_n|^{2}\,dx\Bigr)^{2} \;\ge\; \Bigl(\int_{\mathbb{R}^{3}}\!|\nabla v_a|^{2}\,dx\Bigr)^{2} \;}

1. 用 Fatou 引理(下半连续性的“经典”证明)

关键思想:先抽取一个子列使得梯度几乎处处收敛,再把 Fatou 引理 用到
fn(x)=vn(x)20f_n(x)=|\nabla v_n(x)|^{2}\ge0 上。

步骤

  1. 弱收敛 \Longrightarrow 存在 a.e. 收敛的子列
    L2(R3)L^{2}(\mathbb R^{3}) 是可分 Hilbert 空间。
    由 Banach–Saks / Mazur 引理 + 对角线法,可取子列(仍记 nn)使

    vn(x)    va(x)a.e. xR3.(1)\nabla v_n(x)\;\longrightarrow\;\nabla v_a(x) \quad\text{a.e. }x\in\mathbb R^{3}. \tag{1}
  2. fn(x)=vn(x)2f_n(x)=|\nabla v_n(x)|^{2}; 定义

    f(x):=lim infnfn(x)(0).(2)f(x):=\liminf_{n\to\infty} f_n(x)\quad(\ge0). \tag{2}
  3. Fatou 引理

    R3f(x)dx    lim infnR3fn(x)dx.(3)\int_{\mathbb R^{3}} f(x)\,dx \;\le\; \liminf_{n\to\infty}\int_{\mathbb R^{3}} f_n(x)\,dx. \tag{3}
  4. 比较被积函数
    由 (1) 得 f(x)va(x)2f(x)\ge|\nabla v_a(x)|^{2} a.e.
    将此与 (3) 结合:

    R3 ⁣va2dx    lim infnR3 ⁣vn2dx.(4)\int_{\mathbb R^{3}}\!|\nabla v_a|^{2}dx \;\le\; \liminf_{n\to\infty}\int_{\mathbb R^{3}}\!|\nabla v_n|^{2}dx. \tag{4}
  5. 平方即可得到结论
    非负列有 (lim infan)2=lim infan2\bigl(\liminf a_n\bigr)^{2}=\liminf a_n^{2},于是

    lim infn( ⁣vn2)2    ( ⁣va2)2.\liminf_{n\to\infty}\Bigl(\!\int |\nabla v_n|^{2}\Bigr)^{2} \;\ge\; \Bigl(\!\int |\nabla v_a|^{2}\Bigr)^{2}.

2. “控制收敛”公式(用 Cauchy–Schwarz,也可视作 DCT 套路)

把范数展开成

vn22=va22+vnva22+2va,vnva.(5)\|\nabla v_n\|_{2}^{2} =\|\nabla v_a\|_{2}^{2} +\|\nabla v_n-\nabla v_a\|_{2}^{2} +2\langle\nabla v_a,\nabla v_n-\nabla v_a\rangle . \tag{5}
  • 第三项因 vnva\nabla v_n\rightharpoonup\nabla v_a0\to0
  • 中间项 vnva220\|\nabla v_n-\nabla v_a\|_{2}^{2}\ge0

两边取 lim inf\liminf

lim infnvn22    va22,(6)\liminf_{n\to\infty}\|\nabla v_n\|_{2}^{2} \;\ge\; \|\nabla v_a\|_{2}^{2}, \tag{6}

再平方即得同一不等式。


小结

  • 方法 1(Fatou):突出“先抽子列 a.e. 收敛 + Fatou”。
  • 方法 2(控制收敛):用弱收敛 + 非负项直接给出下半连续性。

二者本质上都说明:在 Hilbert 空间里,L2L^{2}-范数对弱收敛是下半连续的。

Condividi questa Q&A