星座密文: ♉♒♉♐♑♍♏♎♑♍♋♎♑♓♎♏♒♑♍♋♉♓♐♒ 时间胶囊: Mar-2025-Φ-3...

Creato il: 15 marzo 2025

Risposto usando O1 da Chat01

Domanda

星座密文: ♉♒♉♐♑♍♏♎♑♍♋♎♑♓♎♏♒♑♍♋♉♓♐♒

时间胶囊: Mar-2025-Φ-34🔍
解密一共三关:

【第一关】密钥序列(使用这个跟密文进行计算):
[4, 21, 85, 203, 195, 177, 85, 247, 17, 49, 177, 111, 195, 49, 177, 231, 4, 21, 85, 203, 195, 177, 85, 247]
【第二关】日期校验码: Φ
(验证一下你解密的信息是否匹配)
【第三关】破解星座符号的秘密!
提示:S盒替换+异或运算的组合,每个星座符号对应一个特定的数值区间。

Pensiero

Decrypting the pattern

I'm applying a zodiac and XOR-based cipher with a key sequence to uncover the hidden message in the ciphertext. Each zodiac symbol relates to a numeric range for S-box substitution.

Mapping zodiac symbols

I’m noting the 24 zodiac symbols, each associated with an index from 0 to 23. This is key for decoding, as each symbol will link to specific numeric ranges.

Mapping the symbols

OK, I’m thinking through the 24 zodiac symbols, each tied to an integer key. This helps in S-box substitution and XOR operations, ensuring a consistent mapping throughout.

Assigning values

I'm mapping each zodiac symbol to values from 0 to 11, considering S-box substitution and XOR with the key for encryption. This will help decipher the message effectively.

Working through S-Box and XOR

Given the details, I'm mapping zodiac signs to numeric values, applying S-Box substitution, and then XORing with the key. This sequence might reveal the final ASCII message.

Charting the approach

OK, let me see. Each zodiac sign maps to numeric ranges. Applying S-Box substitution, then XORing the result with the key, might unlock the final encoded message.

Charting estimation

Each zodiac symbol might map to a numeric range, like Aries to 0-15, with S-Box substitution and XOR. More details are needed for precise decoding.

Mapping zodiac signs

Mapping each zodiac sign to numbers 0-11, I'm working through S-Box substitution and XOR with the key. For signs beyond 11, a different encoding method is likely needed.

Mapping the approach

I’m working through how to map zodiac signs to 0-11, apply a standard AES S-box, XOR with the key, and reveal the final ASCII-based message.

Converting and mapping

I’m turning zodiac symbols into numbers, mapping each to a value from 0-11. Using this, I’ll apply S-Box substitution and XOR with the key to uncover the final message.

Mapping and transforming

I'm assigning zodiac signs to numeric values 0-11. Then, I’ll apply a custom S-box and use XOR with the key to decode the final message effectively.

Translating zodiac signs

I’m figuring out each zodiac sign's Unicode codepoint and considering how to map them to a 2-digit hex value, then XOR with the key for a simpler decoding method.

Reasoned for 23 seconds

Risposta

Below is one way you can experiment with decoding that zodiac‐symbol string using the clue about “S‑box substitution + XOR.” Of course, the puzzle itself is a bit open‐ended (we are not explicitly told which S‑box, or exactly how the zodiac symbols map to numbers), so the best approach is often to make a reasonable guess and see if the result looks like meaningful text.


A Reasonable Guess at the Method

  1. Assign each zodiac sign a small integer
    Since there are 12 signs, a very common/simple mapping is:

    text
    Aries (♈) → 0 Taurus (♉) → 1 Gemini (♊) → 2 Cancer (♋) → 3 Leo (♌) → 4 Virgo (♍) → 5 Libra (♎) → 6 Scorpio (♏) → 7 Sagittarius (♐) → 8 Capricorn (♑) → 9 Aquarius (♒) → 10 Pisces (♓) → 11

    We’ll call that your “S‑box substitution,” on the assumption that the puzzle’s mention of an “S‑box” could simply mean “substitute each zodiac symbol with its numeric index.”

  2. XOR each substituted value with the key
    The puzzle gives a 24‐element key array. Your ciphertext also has 24 zodiac symbols. That suggests you do:

    DecryptedByte[i]  =  (IndexFromZodiac[i])    (Key[i]). \text{DecryptedByte}[i] \;=\; \bigl(\text{IndexFromZodiac}[i]\bigr) \;\oplus\; \bigl(\text{Key}[i]\bigr).

    Here, \oplus is the bitwise XOR operation.

  3. Interpret the result as ASCII
    Once you XOR, you get numbers in the range 0–255. You can then try to interpret each resulting byte as an ASCII character and see if it forms something meaningful.


Demonstration in (Pseudo) Code

Below is an example using Python‐style code. You can try this process and see if the output yields a readable string (often a puzzle’s real “aha!” is that it does suddenly form an English phrase).

python
zodiac_map = { '♈': 0, '♉': 1, '♊': 2, '♋': 3, '♌': 4, '♍': 5, '♎': 6, '♏': 7, '♐': 8, '♑': 9, '♒': 10, '♓': 11 } # Ciphertext zodiac symbols (24 of them) cipher_symbols = "♉♒♉♐♑♍♏♎♑♍♋♎♑♓♎♏♒♑♍♋♉♓♐♒" # The 24-element key from the puzzle key = [4, 21, 85, 203, 195, 177, 85, 247, 17, 49, 177, 111, 195, 49, 177, 231, 4, 21, 85, 203, 195, 177, 85, 247] # Step 1: Map each zodiac symbol to an integer (the “S-box substitution”). mapped = [zodiac_map[sym] for sym in cipher_symbols] # Step 2: XOR each mapped value with the corresponding element in the key. decrypted_nums = [m ^ k for (m, k) in zip(mapped, key)] # Step 3: Convert each resulting number to a character (ASCII). plaintext = "".join(chr(n) for n in decrypted_nums) print(plaintext)

If your puzzle is consistent with this approach, you’ll see either:

  • A readable English sentence, or
  • Some partial readable text, possibly with a hint to reorder, or
  • Gibberish (in which case we’d suspect a different S‐box or a different mapping).

About That “Φ” Date Check Code

The puzzle mentions a “日期校验码: Φ” (“date check code: Φ”), implying that once you decrypt, the correct message should somehow affirm “Mar‐2025‐Φ‐34🔍” or tie back to that date snippet. It might appear directly in the final text, or it may be a clue that the solved text “makes sense” only if it matches some piece of information about March 2025, etc.


Conclusion

The most straightforward guess is:

  • S-box: “Map zodiac sign → 0..11.”
  • Then XOR with the puzzle’s key.
  • Read as ASCII.

Try that and see if the final string “looks right.” If not, you can explore variations (e.g. a different sign‐to‐number order, or maybe each sign is the high nibble so that ♉ = 0x10..0x1F, etc.).

Good luck with the puzzle—and pay attention to whether your final decrypted text references the “Φ” check code or includes a date; that’s probably the sign you’ve done it correctly!

Domanda

请你给出最终解密出来的结果

Pensiero

Labeling zodiac symbols

I’m noting each zodiac symbol's name and assigning it a number, then preparing to label these in a Python environment.

Reasoned for 4 seconds

Python

python
zodiac_map = { '♈': 0, '♉': 1, '♊': 2, '♋': 3, '♌': 4, '♍': 5, '♎': 6, '♏': 7, '♐': 8, '♑': 9, '♒': 10, '♓': 11 } cipher_symbols = "♉♒♉♐♑♍♏♎♑♍♋♎♑♓♎♏♒♑♍♋♉♓♐♒" # Map each zodiac symbol to an integer. mapped = [zodiac_map[s] for s in cipher_symbols] # The 24-element key key = [4, 21, 85, 203, 195, 177, 85, 247, 17, 49, 177, 111, 195, 49, 177, 231, 4, 21, 85, 203, 195, 177, 85, 247] # XOR each mapped value with the corresponding key element decrypted_nums = [m ^ k for m, k in zip(mapped, key)] # Convert to characters plaintext = "".join(chr(n) for n in decrypted_nums) plaintext '\x05\x1fTÃÊ´Rñ\x184^2iÊ:·à\x0e\x1cPȺ]ý'

Pensiero

Mapping the approach

I'm working through the idea that each zodiac symbol might correspond to a unique numeric range within a specific "sector" or interval, like a month-based system.

Combining methods

I’m looking into mapping zodiac symbols to their standard date ranges or ASCII codes, then using XOR. This might result in unique outputs as I combine these steps.

Reasoned for a few seconds

Python

python
zodiac_map_1thru12 = { '♈': 1, '♉': 2, '♊': 3, '♋': 4, '♌': 5, '♍': 6, '♎': 7, '♏': 8, '♐': 9, '♑': 10, '♒': 11, '♓': 12 } cipher_symbols = "♉♒♉♐♑♍♏♎♑♍♋♎♑♓♎♏♒♑♍♋♉♓♐♒" mapped_alt = [zodiac_map_1thru12[s] for s in cipher_symbols] key = [4, 21, 85, 203, 195, 177, 85, 247, 17, 49, 177, 111, 195, 49, 177, 231, 4, 21, 85, 203, 195, 177, 85, 247] decrypted_nums_alt = [m ^ k for m, k in zip(mapped_alt, key)] plaintext_alt = "".join(chr(n) for n in decrypted_nums_alt) plaintext_alt '\x06\x1eWÂÉ·]ð\x1b7µhÉ=¶ï\x0f\x1fSÏÁ½\\ü'

Pensiero

Mapping zodiac symbols

I’m working through the idea that each zodiac sign might correspond to a specific numeric range, like Aries being 0x01 to 0x1F.

Examining decoding methods

I’m curious about encoding and decoding options, testing Latin-1 and UTF-8, and considering if a 24-byte format represents Chinese characters or ASCII transformation like AES S-box.

Applying AES S-box

I’m thinking through using AES S-box substitution and XOR-ing with a key, assuming zodiac signs are mapped to 8-bit indices and interpreting the result as ASCII.

Reasoned for 6 seconds

Python

python
# Let's define the AES S-box fully: AES_SBOX = [ 0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16 ] zodiac_map_0through11 = { '♈': 0, # Aries '♉': 1, # Taurus '♊': 2, # Gemini '♋': 3, # Cancer '♌': 4, # Leo '♍': 5, # Virgo '♎': 6, # Libra '♏': 7, # Scorpio '♐': 8, # Sagittarius '♑': 9, # Capricorn '♒': 10, # Aquarius '♓': 11 # Pisces } cipher_symbols = "♉♒♉♐♑♍♏♎♑♍♋♎♑♓♎♏♒♑♍♋♉♓♐♒" mapped_sbox_input = [zodiac_map_0through11[s] for s in cipher_symbols] key = [4, 21, 85, 203, 195, 177, 85, 247, 17, 49, 177, 111, 195, 49, 177, 231, 4, 21, 85, 203, 195, 177, 85, 247] dec_sbox = [] for i, val in enumerate(mapped_sbox_input): sbox_val = AES_SBOX[val] # S-box substitution dec_val = sbox_val ^ key[i] dec_sbox.append(dec_val) plaintext_sbox = "".join(chr(x) for x in dec_sbox) plaintext_sbox 'xr)ûÂÚ\x90\x98\x10ZÊ\x00Â\x1aÞ"c\x14>°¿\x9ae\x90'

Pensiero

Reasoned for a second

Python

python
# Let's define the AES inverse S-box AES_INV_SBOX = [ 0x52,0x09,0x6A,0xD5,0x30,0x36,0xA5,0x38,0xBF,0x40,0xA3,0x9E,0x81,0xF3,0xD7,0xFB, 0x7C,0xE3,0x39,0x82,0x9B,0x2F,0xFF,0x87,0x34,0x8E,0x43,0x44,0xC4,0xDE,0xE9,0xCB, 0x54,0x7B,0x94,0x32,0xA6,0xC2,0x23,0x3D,0xEE,0x4C,0x95,0x0B,0x42,0xFA,0xC3,0x4E, 0x08,0x2E,0xA1,0x66,0x28,0xD9,0x24,0xB2,0x76,0x5B,0xA2,0x49,0x6D,0x8B,0xD1,0x25, 0x72,0xF8,0xF6,0x64,0x86,0x68,0x98,0x16,0xD4,0xA4,0x5C,0xCC,0x5D,0x65,0xB6,0x92, 0x6C,0x70,0x48,0x50,0xFD,0xED,0xB9,0xDA,0x5E,0x15,0x46,0x57,0xA7,0x8D,0x9D,0x84, 0x90,0xD8,0xAB,0x00,0x8C,0xBC,0xD3,0x0A,0xF7,0xE4,0x58,0x05,0xB8,0xB3,0x45,0x06, 0xD0,0x2C,0x1E,0x8F,0xCA,0x3F,0x0F,0x02,0xC1,0xAF,0xBD,0x03,0x01,0x13,0x8A,0x6B, 0x3A,0x91,0x11,0x41,0x4F,0x67,0xDC,0xEA,0x97,0xF2,0xCF,0xCE,0xF0,0xB4,0xE6,0x73, 0x96,0xAC,0x74,0x22,0xE7,0xAD,0x35,0x85,0xE2,0xF9,0x37,0xE8,0x1C,0x75,0xDF,0x6E, 0x47,0xF1,0x1A,0x71,0x1D,0x29,0xC5,0x89,0x6F,0xB7,0x62,0x0E,0xAA,0x18,0xBE,0x1B, 0xFC,0x56,0x3E,0x4B,0xC6,0xD2,0x79,0x20,0x9A,0xDB,0xC0,0xFE,0x78,0xCD,0x5A,0xF4, 0x1F,0xDD,0xA8,0x33,0x88,0x07,0xC7,0x31,0xB1,0x12,0x10,0x59,0x27,0x80,0xEC,0x5F, 0x60,0x51,0x7F,0xA9,0x19,0xB5,0x4A,0x0D,0x2D,0xE5,0x7A,0x9F,0x93,0xC9,0x9C,0xEF, 0xA0,0xE0,0x3B,0x4D,0xAE,0x2A,0xF5,0xB0,0xC8,0xEB,0xBB,0x3C,0x83,0x53,0x99,0x61, 0x17,0x2B,0x04,0x7E,0xBA,0x77,0xD6,0x26,0xE1,0x69,0x14,0x63,0x55,0x21,0x0C,0x7D ] dec_inv_sbox = [] for i, val in enumerate(mapped_sbox_input): sbox_val = AES_INV_SBOX[val] dec_val = sbox_val ^ key[i] dec_inv_sbox.append(dec_val) plaintext_inv_sbox = "".join(chr(x) for x in dec_inv_sbox) plaintext_inv_sbox '\r¶\\t\x83\x87mRQ\x07dÊ\x83¯\x14ß§Uc\x1eÊ/êT'

Pensiero

Connecting zodiac to ranges

I’m curious if zodiac signs map to numeric ranges, like Aries to a certain ASCII. It’s neat to consider this link for decoding.

Piecing together zodiac clues

OK, let me see. Assigning each zodiac sign a number from Aries to Pisces seems possible. Or, treating the zodiac symbol code points with the key might reveal the final text.

Reasoned for 5 seconds

Python

python
cipher = "♉♒♉♐♑♍♏♎♑♍♋♎♑♓♎♏♒♑♍♋♉♓♐♒" key = [4, 21, 85, 203, 195, 177, 85, 247, 17, 49, 177, 111, 195, 49, 177, 231, 4, 21, 85, 203, 195, 177, 85, 247] decrypted_codepoints = [] for i, ch in enumerate(cipher): code_pt = ord(ch) dec_val = code_pt ^ key[i] decrypted_codepoints.append(dec_val) plaintext_unicode = "".join(chr(x) for x in decrypted_codepoints) plaintext_unicode '♍♇☜⚛⚒⛼☚⚹♀♼⛺☡⚒♢⛿⚨♖♄☘⚀⚊⛢★⚥'

Pensiero

Identifying codepoint patterns

I’m curious about the possibility of patterns in the codepoints of random emoji/unicode symbols. Considering repeating the symbols or examining specific patterns like astrology signs.

Reasoned for 4 seconds

Python

python
cipher_symbols = list(cipher) mapped_sub_9800 = [ord(ch) - 9800 for ch in cipher_symbols] dec_9800 = [(val ^ key[i]) for i, val in enumerate(mapped_sub_9800)] plaintext_9800 = "".join(chr(x) for x in dec_9800) plaintext_9800 '\x05\x1fTÃÊ´Rñ\x184^2iÊ:·à\x0e\x1cPȺ]ý'

Pensiero

Reasoned for a couple of seconds

Python

python
import base64 candidate = '\x05\x1fTÃÊ´Rñ\x184^2iÊ:·à\x0e\x1cPȺ]ý' try: decoded_b64 = base64.b64decode(candidate) print(decoded_b64) except: print("Not valid base64.")

Pensiero

Reasoned for a couple of seconds

Python

python
data = [ord(c) for c in '\x05\x1fTÃÊ´Rñ\x184^2iÊ:·à\x0e\x1cPȺ]ý'] pairs = [(data[i]<<8) + data[i+1] for i in range(0, len(data), 2)] pairs_as_chars = [chr(p) for p in pairs] "".join(pairs_as_chars) 'ԟ哃쪴勱ᠴ뉩쨺럠ผ僈슺巽'

Pensiero

Analyzing encryption

I’m working through a complex encryption puzzle, considering little-endian encoding and date-based indexing. It seems each zodiac sign corresponds to a specific numeric range, possibly involving S-box substitution and XOR operations.

Weighing possibilities

I’m thinking through if the puzzle yields a random Chinese text or if the solution requires making a best guess like "HELLO MARCH 2025" or "READ YOU LOUD AND CLEAR."

Breaking it down

I’m thinking about various methods like brute force, character permutations, and recognizing known puzzles. This helps narrow down possibilities and may reveal a standard ordering.

Formulating a solution

I’m thinking Aries=0, Taurus=1, etc., using "val * 19 mod 256" and XOR with the key. This might point to "星座的秘密: Mar-2025-Φ-34."

Reasoned for 8 seconds

Risposta

下面给出为什么目前所有“常规”解密尝试都无法得出可阅读明文,以及可能需要的额外线索——换言之,基于已知信息,还无法确定唯一且合理的答案。


我们做过哪些尝试?

  1. 简单“星座→数字 0~11”映射 + XOR

    • 把 12 个星座依次映射为 0~11,然后对照题目给出的 24 个字节密钥做异或。
    • 结果得到的只是一串不可见或无意义的字符,并未形成可读的中英文文本,也不符合 Base64 或常见编码规律。
  2. “星座→数字 1~12”映射 + XOR

    • 类似上面,只是将白羊座记为 1、金牛 2、双子 3 …,同样结果是乱码。
  3. 尝试 AES S-box、AES 逆 S-box

    • 题目里提到“S 盒替换 + 异或运算”,我们也测试了最常见的 AES S-box 与逆 S-box:
      1. 先用“星座→0~11”
      2. 把这个值当作索引,查 AES S-box(或逆 S-box)
      3. 再与密钥序列 XOR
    • 解出的仍然是不可读字符。
  4. 直接用 Unicode 码点做 XOR

    • 每个星座符号都有自己在 Unicode 中的码点:
      • 白羊座(♈) = U+2648 = 9800
      • 金牛座(♉) = U+2649 = 9801
      • … 一直到双鱼座(♓) = U+2653 = 9811。
    • 逐个取其 ord(符号) 再 XOR,还是仅得到另一串奇怪符号。
  5. 把结果当成两字节中文(或其他常见编码)

    • 解出的数据长度是 24 字节,若拿它拆成 12 组 2 字节去解码中文或 UTF-16,也未出现可读文本。

通过以上方法可以初步判断:如果只用“最常见的 12 星座索引 + XOR”/“AES S-box + XOR”/“Unicode 码点 + XOR” 都无法还原出可理解文字,那么说明题目里所谓的“S盒”并不是我们平常知道的“AES S-box”,或“映射顺序”不是最普通的 0~11 / 1~12。


为何题目提示“每个星座符号对应一个特定的数值区间”?

题目特别强调:

每个星座符号对应一个特定的数值区间

这意味着:

  • 并不是简单地把星座当作 011、112、或其 Unicode 编码(9800+)。
  • 可能每个星座都对应到一个固定范围(例如 0x100x1F、0x200x2F…之类),甚至每个星座可能对应到若干个候选值,或者是跟星座的日期区间挂钩(如金牛 4.20~5.20,把它拆分成若干数字?)。

此外,题目提到日期校验码“Φ”,以及时间胶囊: Mar-2025-Φ-34🔍,说明解出的明文或多或少应该能跟“2025年3月”或“Φ”对得上。我们尚缺乏关于“特定数值区间”的详细定义——如果少了那个自定义“S盒”的确切内容,就很难确定最后的明文。


是否存在“多重关卡”或“进一步处理”?

题目说“三关”:

  1. 有了密钥(我们已经用过了)。
  2. 有了日期校验码 Φ(说明解密后得到的文字/数字,应该能验证这个 “Φ” 线索)。
  3. 最终破解星座符号的秘密(实际上应先找到它对应的 S-box 规则,再 XOR,才能拿到可读文本)。

但从题面,尚没有给出完整 S-box 或更多暗示(例如“射手座对应 0xA0~0xAF”之类)。我们也不清楚“Φ=?”到底是怎么检验。


总结:无法直接给出“最终明文”

  • 如果题目作者在“每个星座 → 具体数值区间” 方面有特别的自定义表(不一定是公开的标准)——那就必须拿到那张映射表,才能正确做 S-box 替换。
  • 目前所有“常见”替换思路都只得到乱码。
  • 因此,在未获得更多自定义映射 / S-box 细节前,无法还原出可读的最终明文

换句话说,您给出的星座密文、密钥序列、以及那一句“提示:S盒替换+异或运算 + 每个星座符号对应特定的数值区间”,并不足以让我们反推具体是哪一种自定义的“星座S-Box”——自然也就无法给出最终的可读答案。


如果您手上还有更多线索

  • 星座与日期:例如,是不是要把星座的起始/结束日期换算成数字?
  • S盒具体定义:也许题目在别处另给了一个 12×(若干大小) 的替换表?
  • 示例:若有“演示版”示例,能让人推断出某种固定规律。

只有拼出这些,才能真正完成第 3 关的“最终解密”。


结论

由于题目尚未提供完整的自定义星座“S-Box”规则,无法确定最终明文。若您有更多关于“星座符号 → 数值区间”的说明,可以再补充,我们就能完成最后的解码。

简言之
现有信息下,任何常规“星座=0~11”或“Unicode 码点”+S-box(AES)或直接 XOR,都只生成无意义结果,无法推出可读的最终解密内容。
真正的解密规则(题中所谓的“S盒替换”)大概率是自定义的,尚未公开。只有拿到那套映射,才能完成解密。

Domanda

给个提示,这道题是要逆向推出一部分信息的,fal的兑换码前面几位是一致的,需要根据这几位信息去反推出来一些信息,否则这道题无解

Pensiero

Investigating partial attack

I’m piecing together a partial known plaintext attack to analyze ciphertext with a consistent prefix, likely tied to "fal". This approach guides our puzzle-solving journey.

Analyzing components

I’m examining the 24 zodiac symbols as ciphertext and a 24-element key. It seems the final plaintext might start with "FAL" or a variation.

Mapping known plaintext

I’m curious about a partial known plaintext attack, assuming the final plaintext starts with "fal" or "FAL". Decoding the first 3 bytes, I link them to zodiac symbols and an S-box.

Crafting the solution

Considering a partial known plaintext approach, I’ll analyze "fal" or "FAL" and decipher zodiac symbols using a custom S-box and key. This guides the puzzle solution effectively.

Assessing custom ranges

I’m digging into zodiac symbols' numeric ranges to match "fal". Implementing a partial known plaintext attack, I transpose symbols to ASCII values, checking for consistent patterns.

Reasoned for 9 seconds

Risposta

下面给你一个思路提示,让你能“半逆向”出所需的自定义 S 盒(即“星座→数值”映射),从而完成最终解密。核心做法就是**“已知明文前缀”**(known‐plaintext attack):

题意里提到 “fal 的兑换码前面几位是一致”,说明最终解出的明文(24 个字节)开头可能就是一段你已知部分已知的字符串,比如 "FAL...""fal..."

1. 假设前缀 & 逆向 S 盒

  1. 假设解密后前几个字节等于某个你知道/猜到的前缀。

    • 例如你猜它以 "fal"(0x66 0x61 0x6C)或 "FAL"(0x46 0x41 0x4C)开头。
    • 如果更确定一些,也可能是 "FAL2025""fal2025" 之类,你可以酌情尝试。
  2. 根据 XOR 公式反推
    已知

    Plain[i]  =  (SBox(ZodiacSymbol[i]))    Key[i].\text{Plain}[i] \;=\; \bigl(\text{SBox}(\text{ZodiacSymbol}[i])\bigr)\;\oplus\;\text{Key}[i].

    那么

    SBox(ZodiacSymbol[i])  =  Plain[i]    Key[i].\text{SBox}(\text{ZodiacSymbol}[i]) \;=\; \text{Plain}[i]\;\oplus\;\text{Key}[i].
    • 这里 ZodiacSymbol[i]\text{ZodiacSymbol}[i] 就是第 ii 个星座符号(比如 ♉、♒ 等)。
    • Key[i]\text{Key}[i] 是给定的第 ii 个密钥字节(题目提供了 24 个)。
    • Plain[i]\text{Plain}[i] 则是你猜定的明文前缀对应 ASCII 值。
  3. 由此可以“逆向”出最前面几个星座符号的S 盒取值**。

    • 比方说,你想让第 0 个解密后是 'f'(0x66),而第 0 个密钥是 4,那么: SBox(ZodiacSymbol[0])=0x660x04=0x62\text{SBox}(\text{ZodiacSymbol}[0]) = 0x66 \oplus 0x04 = 0x62
    • 这样就得出“星座符号 [0] (比如 ♉) 在自定义 S 盒里必须映射到 0x62”。
  4. 观察反推值是否合理?

    • 如果题目说“每个星座符号对应某数值区间”,那么你要看这 0x62 (= 98) 是否落在合理区间内?
    • 如果符合,就暂时保留这个映射。
    • 如若明显不符(比如推出来是 0x3E8 = 1000,多半超出 0–255),你就得换一个猜想(或许要猜 “FAL...” 换成 “fal...” 之类)。
  5. 用同样方法,逆向前 35 个字节,推断出对应那 35 个星座符号的映射规则。

    • 如果看上去都得到一组“合理”的数值(比如都在 0x00 ~ 0xFF 之内,且题目所称的“特定区间”也能自洽),说明你的前缀猜测可能是对的
    • 然后再尝试把这些映射“推而广之”,看看后面其余星座符号(第 4、5…直到第 23 个)是否可以用同一规律或区间来推算。

这样,你就能一点点“拼”出那个神秘的自定义 S 盒:

SBox()=?,SBox()=?, \text{SBox}(\text{♉}) = ?,\quad \text{SBox}(\text{♒}) = ?,\quad \dots

当你完成了整张 12 星座(或至少加上每个符号出现多次的情况)对应的“映射值”后,再对整串 24 个符号做统一的“SBox(符号[i])Key[i] \text{SBox}(\text{符号}[i]) \oplus \text{Key}[i]”即可一次性还原完整明文


2. 实操小示例(Python 伪代码)

以下示例,以“猜测前缀是 fal”为例,展示如何反推前 3 个字符所需的 S 盒值。不过真正解题时,你可能还要进一步核对题目所谓“特定数值区间”是不是满足。

python
cipher_symbols = "♉♒♉♐♑..." # 24符号(省略) key = [4, 21, 85, ...] # 24字节 # 假设明文要以 "fal" 开头 known_prefix = ["f", "a", "l"] # => [0x66, 0x61, 0x6C] # 反推前 3 个符号的S-box映射值 sbox_map = {} # 用来记录“某个星座符号 -> 其S盒数值” for i in range(len(known_prefix)): star_sign = cipher_symbols[i] # e.g. ♉ k = key[i] # e.g. 4 plain_val = ord(known_prefix[i]) # e.g. 0x66 sbox_val = plain_val ^ k # XOR sbox_map[star_sign] = sbox_val print(sbox_map) # 这会打印类似 { '♉': 0x62, '♒': 0x7C, '♐': 0xC0, ... } # 如果你拿到的 sbox_val 超出合理范围,或跟“题目限定区间”冲突,就得换其他前缀再试。

后续步骤

  1. 用上面得到的部分映射填进一个“总表” (zodiac -> value)。
  2. 如果同一个星座符号在第 0 位和第 10 位分别出现,就可以检查“它们解出来的S盒值是否一致”?如果不一致,就说明前缀猜错了。
  3. 当所有出现的星座符号都能映射到同一个区间且保持一致,再用这张完整(或足够完整)的 S 盒表对 24 个符号做 XOR 解密,看看最终得到的字符串是否可读、且跟“Φ”日期校验、兑换码之类信息能对上。

3. 总结

  • 核心提示:利用“前几位已知(或可猜)的明文”去反推前几颗星座符号在自定义 S 盒中的数值,然后扩展到全部星座符号。
  • 如此,你就能逆向得出题目里没直接告诉你的那张“星座 S 盒”映射表。
  • 一旦拿到映射表,再进行 XOR,就可得到完整可读的 24 字节明文,也就通关了。

希望这个思路能帮你跨越“无解”瓶颈,把隐藏的自定义映射给“猜”或“逆”出来。祝你解谜顺利!

Domanda

请你按照下文提示,推理出最终答案。
【给个提示,这道题是要逆向推出一部分信息的,fal的兑换码前面几位是一致的,需要根据这几位信息去反推出来一些信息,否则这道题无解】

Pensiero

Discern patterns

I'm mapping out the ciphertext and considering the key's length and the presence of zodiac symbols. Using a Python-based S-box mapping to decode the message.

Mapping symbols

Deciphering ASCII codes and XORing with key bytes to map zodiac symbols. Checking if these symbols reappear for consistent deciphering. Python code to validate the approach is next.

Piecing together the clues

Analyzing zodiac symbols and their frequency. Using a custom S-box and XOR operation with the key, "FAL" seems plausible. This method should further clarify the code's pattern.

Decoding the message

I’m mapping the zodiac symbols to integers and starting with "FAL" as the initial guess. This will help identify repeated patterns and determine if any conflicts arise in the decoding process.

Addressing contradictions

OK, let me see. Using "FAL" with ♉ at indices 0 and 2 causes a contradiction, as each zodiac sign must map uniquely. "FAF" might be a more fitting guess.

Pinpointing a pattern

OK, let me see if "faf" works to replace "FAL" or "fal." Repeated symbols and single mappings suggest "faf" is a plausible starting point.

Adjusting my approach

Taking a closer look at "FAF" for the initial three characters, factoring in repeated zodiac signs and single mappings. This thoughtful approach should ensure a more consistent result.

Mapping initials

I’m piecing together the first three characters systematically to match zodiac signs, ensuring consistency in single mappings and avoiding contradictions in sbox values.

Mapping potential prefixes

Using a brute force technique, I’m exploring capital and lowercase letters for the first three characters. This approach ensures no conflicts with repeated zodiac signs.

Building a consistent S-box

I'm curious about generating a 24-character ASCII plaintext without contradiction, ensuring repeated signs yield identical S-box values. Progressing through guesses like "FAL," "fal," and "FAF" systematically.

Charting progress

I’m defining the ciphertext, key array, and sbox dictionary. Afterward, I’m examining unique signs and testing guesses like "FAL" or "FAF" to ensure a valid 24-byte mapping without contradictions.

Weighing character choices

I’m piecing together a small brute force approach for the initial four characters, considering "FAL" or "fal" as possible options. Checking for contradictions with repeating zodiac symbols is next.

Evaluating decoding options

I’m leaning towards a brute force strategy to decode the entire ciphertext using uppercase letters or digits, preserving partial mappings until a conflict is found. This approach aids in managing ambiguities.

Dodging contradictions

I tested "FAL" and "fal" as initial guesses, pinpointing conflicts with repeating signs. Now, I’m considering "faf" or "fa f" instead.

Identifying the issue

I’m examining "faf" as an initial guess, noting contradictions in sign mapping. This reveals that P[0]P[0] must equal P[2]P[2], pointing to deeper inconsistency.

Nailing down contradictions

I'm digging into the notion that the same sign needs the same SBOX value. This triggers a clear contradiction, suggesting the puzzle might be inconsistent or more complex than it seems.

Noticing inconsistencies

I'm thinking through how different codepoints or typographical errors could explain the contradiction. The puzzle might be using a non-standard SBOX function or a byte-based approach.

Pinpointing potential quirks

OK, let's explore the idea of non-standard SBOX functions, index-based approaches, or cunning tricks. This seems like a puzzle with unique features that don't fit the usual methods.

Weighing possibilities

I'm charting a path through various final code formats— dates, labels, and abbreviations. Ensuring the code is exactly 24 characters is key.

Formulating possibilities

I'm noting various ways to form a 24-character code, including patterns and abbreviations. This leads me to explore different interpretations to reach a logical conclusion.

Piecing together

I’m focusing on crafting a 24-character code by tweaking abbreviations and detailed mentions, ensuring each word and element is correctly included to meet the character count.

Mapping the final code

I'm adding characters to build a 24-character code, ensuring it is complete and precise. Progress is being made with each shift or addition, striving for a balanced result.

Navigating the puzzle

Hmm, I’m thinking the puzzle might be unsolvable or cleverly tricky, as it’s full of contradictions and lacks a clear single SBOX approach.

Reasoned for 50 seconds

Risposta

下面给出一个完整的推理过程,以便看清其中的“矛盾点”和“可能的结论”。如果你只想看最终结论,可以直接跳到最下方的“结论”小节。


1. 题目回顾

  • 星座密文(24 个符号):
    ♉♒♉♐♑♍♏♎♑♍♋♎♑♓♎♏♒♑♍♋♉♓♐♒
    
  • 密钥序列(24 个字节):
    text
    [4, 21, 85, 203, 195, 177, 85, 247, 17, 49, 177, 111, 195, 49, 177, 231, 4, 21, 85, 203, 195, 177, 85, 247]
  • 提示
    1. 解密方案是 “S 盒替换 + 异或运算”
    2. 每个星座符号对应某特定数值区间(即并不是简单地把 ♉ 视作 1、或直接用其 Unicode 码点 9801)。
    3. 需要“日期校验码 Φ”来验证正确结果。
    4. 关键线索:“fal 的兑换码前面几位是一致的”,需根据这几位信息去反推,否则无解。也就是说,你大概率已经知道解出的明文前几位是某种“FAL...”或者“fal...”的固定前缀。

2. 为什么会出现“同一星座符号却要求对应不同明文字节”的矛盾?

先看星座密文的第 0、1、2 三个符号:

text
索引 星座符号 0 ♉ 1 ♒ 2 ♉ <-- 跟第 0 个一样,都是 ♉

假设我们把第 ii 个明文字节记作 P[i]P[i],星座符号记作 Z[i]Z[i],密钥记作 K[i]K[i],而“自定义 S 盒”就是一个函数

S(Z)  =  某个 0 255 的整数值, S(Z) \;=\; \text{某个 0~255 的整数值},

然后再通过

P[i]  =  S(Z[i])    K[i]. P[i] \;=\; S(Z[i]) \;\oplus\; K[i].

那么,如果第 0 项与第 2 项都是星座符号 ♉,根据“同一个符号必然映射到同一个 S(Z)S(Z)”,则

S()  =  P[0]K[0]  =  P[2]K[2]. S(\text{♉}) \;=\; P[0] \oplus K[0] \;=\; P[2] \oplus K[2].

可见,第 0 项和第 2 项的明文字节必须满足

P[0]K[0]  =  P[2]K[2]. P[0] \oplus K[0] \;=\; P[2] \oplus K[2].

这里的 K[0]=4K[0] = 4K[2]=85K[2] = 85。若再假设“前缀”是 FALfal,就会马上出现矛盾:

  • 例1:假如明文前 3 个字节是 "FAL",则

    • P[0]=F=0x46P[0] = 'F' = 0x46P[1]=A=0x41P[1] = 'A' = 0x41P[2]=L=0x4CP[2] = 'L' = 0x4C
    • 第 0 项:P[0]K[0]=0x460x04=0x42P[0] \oplus K[0] = 0x46 \oplus 0x04 = 0x42
    • 第 2 项:P[2]K[2]=0x4C0x55=0x19P[2] \oplus K[2] = 0x4C \oplus 0x55 = 0x19
    • 它们显然不相等(0x42 ≠ 0x19),等于说同一个星座符号 ♉ 被映射到了两个不同值,直接冲突
  • 例2:若假设明文前 3 个字节是 "fal",则

    • P[0]=f=0x66P[0] = 'f' = 0x66P[1]=a=0x61P[1] = 'a' = 0x61P[2]=l=0x6CP[2] = 'l' = 0x6C
    • 第 0 项:0x660x04=0x620x66 \oplus 0x04 = 0x62
    • 第 2 项:0x6C0x55=0x390x6C \oplus 0x55 = 0x39
    • 依旧不相等(0x62 ≠ 0x39),同样冲突

更一般地说,只要第 0 字节和第 2 字节不是同一个字符,就一定会导致

(P[0]4)    (P[2]85), (P[0] \oplus 4) \;\neq\; (P[2] \oplus 85),

从而与“同一符号必须映射到同一个 S(Z)”的设定相违。

如果你想让它不冲突,就必须满足

P[0]=P[2], P[0] = P[2],

(P[0]4)=(P[2]85). (P[0] \oplus 4) = (P[2] \oplus 85).

但因为 P[0]=P[2]P[0] = P[2] 同为某个字节 XX,这就要求

X4=X854=85, X \oplus 4 = X \oplus 85 \quad\Longrightarrow\quad 4 = 85,

这是不可能的。
因此,无论你想让第 0、1、2 字节解出 "FAL", "fal", "faf", "FAF", … 只要第 0 和第 2 个明文字节不同,就出现“同符号映射不同值”的矛盾;而若想让第 0 和第 2 字节相同,则也会推导出 4=854 = 85 的荒谬结论。

换言之,仅凭这一点,我们已经能确认:在“同一个星座符号 → 单一映射值”的前提下,这段星座密文与密钥序列无法解出任何一致的明文


3. 从已知线索推理出的最关键结论

第 0 个和第 2 个符号都为♉,而密钥中第 0 和第 2 个字节相差太大 (4 与 85),导致无法得到同一个 S(Z)。

这与题目中“用同一个 S 盒(每个星座符号固定对应一个数值)+ XOR 解出可读明文”的思路是根本冲突的。换言之:

  1. 要么题目本身有额外的规则没有告诉我们(例如某些星座符号在不同位置可以对应不同数值,或者加了某种轮次/移位/位置因子),并非单纯“同符号→同数值”。
  2. 要么这道谜题根本就无解/有内在矛盾,无法用我们常规理解的“S 盒 + XOR”模式来还原。
  3. 即使你用“已知前缀是 FAL/fal”等方法去“逆向 S 盒”,也会在非常前面就遇到冲突,无法完成后续解码。

4. 那么“fal 的兑换码”是什么?

题目口头提示:“fal 的兑换码前面几位是一致的”——通常是暗示你可以用已知前缀(known plaintext)去做反推。但是一旦我们代入密文和密钥,立刻遇到上述“同一星座符号却出现在不同密钥字节位置”的死结。

因此,从技术角度来看,如果坚持“同一符号 → 同一 S 盒值”+“逐字节 XOR”,那就只能得出:** 此密文无法还原出任何自洽明文**。


5. 最终结论

  1. 在题目给出的条件下(单一 S 盒 + XOR),根本无法得到一份无冲突、可读的明文。

    • 第 0、2 项同符号却对应不同 XOR key,已足以产生“必须让 4 = 85”那种不可能事件。
  2. 若题目作者另有隐藏规则(例如:根据明文字节的下标再对 S 盒或星座做二次处理;或者星座符号只是“幌子”,实际每次出现的“♉”内部还分不同版本;或者在不同轮次里 XOR 的 Key 不同),才可能化解矛盾。可我们并没有看到任何此类线索。

  3. 就 puzzle 而言,如果它宣称“请用这个密钥和星座符号 S 盒做简单 XOR”,那它就是个无解/矛盾题

    • “fal 的兑换码前几位”这个提示,也只能让我们更快地发现矛盾所在(因为一开始就要把索引 0 和 2 解码成不同字符,却使用同一符号)。

因此,“按照下文提示推理”,你会发现唯一的合乎逻辑的结论就是:题面本身不具备在常规条件下被解出的可能性。或者说,题面信息不完整/自相矛盾,没有真正能落地的 S 盒 + XOR 解法。


如果题目的本意是考“找出矛盾”

那答案就是:这串密文在现有描述下无解

如果题目有隐藏的别的逻辑/线索

那就必须额外揭示“为什么同一星座符号在第 0 位和第 2 位可以映射不同值”之类的机制,否则仍旧无法完成所谓的“最终解密”。


TL;DR 最后一句

根据密文与密钥的分布情况,可以证明题中设定的“同符号=同S盒值+XOR”必然自相矛盾,故“fal 的兑换码”无法解出,谜题在现有条件下无解。

Domanda

fal兑换码前面几位是_eleven50_xxxx

Pensiero

Breaking down the data

I’m teasing out the details of a 24-character ciphertext, noting that the first 10 characters are _eleven50_, leaving 14 characters to decode.

Mapping out ASCII codes

I'm analyzing the ASCII codes for _eleven50_ and considering that the code might extend beyond _eleven50_ with additional characters.

Decoding star sign symbols

I’m aiming to decode the star sign symbols using their ASCII and key values, applying XOR operations to retrieve the plaintext bytes, and noting any potential conflicts across the sequence.

Addressing conflicts

I’m identifying a conflict in deciphering the star sign symbols, suggesting the star sign might depend on position or have a subscript. The standard method is at odds with these clues.

Examining star sign variations

I'm thinking the star sign might vary by position or have a subscript. This suggests the puzzle could involve a non-standard S-box or specific positional encoding.

Thinking through options

I'm toggling between various hypotheses and methods. With 10 known plaintext bytes, the challenge seems intricate, possibly involving a conflict or trick.

Contention assessment

I'm focusing on potential contradictions within the puzzle. The final output might suggest that the puzzle is unsolvable due to these repeated conflicts and inconsistencies.

Reasoned for 17 seconds

Risposta

以下是一个逐步推理、然后得出“最终结论”的完整过程。重点在于:

  • 题目明确说“需要根据前缀是 \_eleven50\_xxxx 来逆向一部分信息”;
  • 但一旦我们将这个前缀带入密文和密钥去做“单一 S 盒 + XOR”解码,就会遇到不可调和的矛盾

请耐心看完,这样你就能理解为何得出这样的结果,以及最终答案是什么。


1. 复盘题目信息

  • 星座密文(24个符号,共24字节加密后数据):

    text
    位置 i : 符号 0 ♉ 1 ♒ 2 ♉ 3 ♐ 4 ♑ 5 ♍ 6 ♏ 7 ♎ 8 ♑ 9 ♍ 10 ♋ 11 ♎ 12 ♑ 13 ♓ 14 ♎ 15 ♏ 16 ♒ 17 ♑ 18 ♍ 19 ♋ 20 ♉ 21 ♓ 22 ♐ 23 ♒
  • 密钥序列(24个字节,对应上面 0~23 的位置逐一 XOR):

    text
    索引 i : Key[i] 0 = 4 1 = 21 2 = 85 3 = 203 4 = 195 5 = 177 6 = 85 7 = 247 8 = 17 9 = 49 10 = 177 11 = 111 12 = 195 13 = 49 14 = 177 15 = 231 16 = 4 17 = 21 18 = 85 19 = 203 20 = 195 21 = 177 22 = 85 23 = 247
  • 题目思路:将每个星座符号通过某个“自定义 S 盒”映射为(0~255)的数,再与对应的 Key[i] 做 XOR,得到明文字节 Plain[i]。形式为:

    Plain[i]  =  S(ZodiacSymbol[i])    Key[i]. \text{Plain}[i] \;=\; S(\text{ZodiacSymbol}[i]) \;\oplus\; \text{Key}[i].
  • 提示

    1. “fal 的兑换码前面几位是一致的”,并给出前缀"_eleven50_xxxx"。这意味着我们知道明文的最初 10 个字符必然是:

      _   e   l   e   v   e   n   5   0   _
      

      (其中下划线 _ 的 ASCII 码是 0x5F。)

    2. 题目还提到“日期校验码 Φ”“S 盒替换 + 异或运算”“星座符号对应特定数值区间”等等。可是在没有进一步的自定义规则前,我们先单纯地尝试“同一星座符号 → 同一个字节映射值”来做 XOR 解密。


2. 将前缀带入,立即发现冲突

让我们把“前 10 字节的明文”记下来,并分别与 Key[0..9] 异或,以“反推”各星座符号对应的 S 盒值。

2.1 明文前 10 个字符的 ASCII

_eleven50_ 拆成 ASCII 十进制(十六进制)如下:

字符ASCII十进制十六进制
_950x5F
e1010x65
l1080x6C
e1010x65
v1180x76
e1010x65
n1100x6E
5530x35
0480x30
_950x5F

对应索引 i=0..9。

2.2 逐项 XOR,得到“要求的”S 盒取值

假设我们先不去看重复符号问题,只做单项反推。
按照

S(ZodiacSymbol[i])=Plain[i]Key[i]. S(\text{ZodiacSymbol}[i]) = \text{Plain}[i] \oplus \text{Key}[i].
  • i=0: 符号=♉, Key=4, Plain=0x5F

    • 反推得到 S(♉) = 0x5F ^ 0x04 = 0x5B (十进制 91)
  • i=1: 符号=♒, Key=21, Plain=0x65

    • S(♒) = 0x65 ^ 0x15 = 0x70 (112)
  • i=2: 符号=♉, Key=85, Plain=0x6C

    • S(♉) = 0x6C ^ 0x55 = 0x39 (57)

立刻就看到矛盾

  • 从第 0 项推导得到 S(♉) = 0x5B
  • 从第 2 项却推导出 S(♉) = 0x39
  • 而我们本来假设“同一个符号 ♉ 在自定义 S 盒中对应唯一的取值”。

显然,不可能同时让 S(♉) = 0x5BS(♉) = 0x39。这等于说前 3 字节就已经冲突,后面更别提了。

2.3 原因分析

根源就在:

  • 第 0 个和第 2 个星座符号是同一个 “♉” ;
  • 但是密钥 Key[0] = 4Key[2] = 85 差异巨大,且前缀的明文字节 Plain[0]Plain[2] 也不相同(一个是 _=0x5F,一个是 l=0x6C)。
  • 导致 S(♉) = Plain[0]^Key[0]S(♉) = Plain[2]^Key[2] 这两条公式无法同时成立。

换句话说,“同符号 → 同S值”与“已知前缀 _eleven50_”这两者放在一起,就会自相矛盾,根本无法让它成立。


3. 更一般性的结论

其实不管前缀是 “eleven50” 还是 “FALxxxxx” 或 “falxxxxx”…… 只要 “♉” 同时出现在第 0、2、20 等位置,而对应 Key[0]=4, Key[2]=85, Key[20]=195 又都不同,就会要求“同一个符号”被映射到好几种不同数值。这必然和 “单一 S 盒映射” 背道而驰。

因此,在题目给出的常规理解(同符号→同映射值)下,这段密文 + 这串密钥无论前缀如何都无法解出自洽结果。


4. 最终答案:题目在现有条件下“无解”

题目让我们“根据已知前缀 _eleven50_ 逆向一部分信息”,但实际一做就发现根本矛盾,只会得出“同一星座符号却要映射成不同值”的冲突。除非再加上别的非常规规则(例如 “同一符号在不同位置索引时再+某偏移” 之类),否则无法生成任何正常明文

因此,最合理且直接的结论就是:

  1. 如果依照题目所说的那种“简单 S 盒 + XOR”,并且“同一星座符号在任何位置都映射到同一个字节值”,则这道题无解
  2. 所谓的“fal 兑换码前缀 _eleven50_xxxx”其实加速了我们发现矛盾,但并不能让它真正解出明文。
  3. 若题目真有某种隐藏机制(比如位置轮换、动态 S 盒等),那必须先公开具体算法,否则无法在常规范畴内解出任何可读结果。

TL;DR

当你尝试把“eleven50”作为前缀带入解码时,会立即在第 0、2 项上遇到同符号♉却对应不同XOR值的冲突。
由此可见,这道题所宣称的单一“S 盒替换 + XOR”不可能解出正确明文的。

这便是最终推理的答案

  • 题目无解(在题目给定的规则下);
  • 或者说,它存在内部自相矛盾,并非真实能完成的单纯加密。

若有人问“那真正的明文在哪?”——在现有信息下并不存在

Condividi questa Q&A