Нахождение производной функции
Creato il: 25 gennaio 2025
Creato il: 25 gennaio 2025
Describing derivative methods
I’m outlining the steps to systematically find derivatives, including the chain rule and product rule, in Russian for precise communication.
Mapping derivative steps
I'm using the quotient rule to differentiate , simplify , and find .
Refining the expression
I’m meticulously simplifying to achieve .
Simplifying the steps
I’m laying out the process to derive by refining to achieve .
Confirming consistency
I’m verifying the derivative by checking signs and numerical values, ensuring it aligns with the function's behavior.
Confirming derivative precision
I’m checking the derivative near using a small difference quotient, confirming it’s close to -0.5, consistent with the function's behavior.
Analyzing known identities
I'm exploring trigonometric identities and algebraic expressions to simplify and the derivative, aiming to find a simpler form or constant expression.
Rewriting expressions
I’m working through transforming into a more digestible form, aiming to use known identities and simplify the derivative further.
Working through trigonometric identities
I’m factoring terms and attempting various trigonometric identities to simplify to . Progress is steady and insightful.
Trying another way
I’m exploring different methods to simplify and , but progress remains steady. It's interesting to see what strategies might bring us closer to a solution.
Facilitating the process
OK, let me see. By factoring out and using known identities, I’m simplifying and to streamline the derivative calculation.
Breaking down expressions
I’m piecing together how and simplify to a more straightforward form, using algebraic factorization and trigonometric identities, making the derivative calculation smoother.
Simplifying the derivative
I’m canceling out common factors in the numerator and denominator, leading to the simplified derivative .
Confirming the derivative
I'm checking the derivative at and using the difference quotient to ensure the calculation aligns with the function's behavior, leading to the confirmed derivative .
Confirming the derivative
I’m verifying the derivative at by calculating the difference quotient and using a Taylor expansion, confirming the result as the precise slope.
Confirming the slope
OK, let me see. The difference quotient and Taylor expansion are confirming the slope's proximity to 0.5. This implies the derivative near aligns well with the function's behaviors.
Breaking down the process
I’m splitting into simpler terms to find the derivative by calculating the derivatives of and .
Breaking down and simplifying
I’m simplifying by factoring terms in the denominator, applying the difference of squares, and breaking down each expression to ensure everything is clear and accurate.
Combining fractions
I’m working through combining and into a single fraction, looking for known identities or trigonometric functions that might simplify the expression.
Rewriting the function
Transforming into and , then simplifying the derivative through trigonometric identities and , makes me think progress is being made.
Verifying trigonometric identities
I’m carefully ensuring accurate steps by rechecking trigonometric identities and substitutions, leading to the derivative .
Refining the approach
OK, let me see. I’m expressing trigonometric functions in terms of and ensuring all steps are accurate, leading to the derivative .
Piecing together the solution
OK, I’ll finalize by gathering all components, ensuring the derivative is accurately presented.
Verifying fractions
I’m gathering info to see if the derivative matches different approaches, like vector analysis and partial fractions, to confirm consistency. This involves testing trigonometric and algebraic methods.
Combining fractions
OK, let me see. I’m pulling together partial fractions and common denominators to simplify the derivative expression, ensuring all terms are accurately represented for a precise final form.
Simplifying expressions
Piecing together, the numerator simplifies to -1, leading to the final derivative expression , which confirms the expected behavior.
Confirming derivative accuracy
I’m checking the derivative against the trigonometric approach, ensuring consistency across methods.
Thought about нахождение производной функции for 1m 46s
Ниже приведён план решения и подробные выкладки для каждой из заданных функций. Текст дан на русском языке.
Чтобы найти производную функции , обычно используют следующие правила:
В большинстве практических задач используется комбинация этих правил.
Обозначим:
Тогда
По правилу цепочки:
Обозначим
Тогда . По правилу цепочки:
Находим (правило частного):
Тогда
Значит,
Но , а
Отсюда
Тогда
Следовательно,
Упрощая,
Итоговая производная:
Пусть
Тогда
Значит,
Обозначим . Тогда
Поэтому
Можно вынести 2:
Однако удобнее заметить следующую «хитрую» упрощённую форму. Рассмотрим пошагово:
Быстрый способ (через алгебраическое тождество) даёт результат:
Ниже — краткий «чистый» вывод.
(u'(x) = 1 - \dfrac{x}{\sqrt{1 + x^2}} = \dfrac{\sqrt{1 + x^2} - x}{\sqrt{1 + x^2}}.)
(;1 + \bigl[x - \sqrt{1 + x^2}\bigr]^2 = 2,\sqrt{1 + x^2},\bigl(\sqrt{1 + x^2} - x\bigr)) (это можно показать путём факторизаций).
Тогда
Фактор сокращается, и остаётся:
Таким образом,
Перепишем логарифм как разность:
Тогда
А
Значит, производная:
То есть
Приведём к общему знаменателю . Подробно можно расписать, но результат (после аккуратных сокращений) получается весьма компактный:
Проверка: при подробном сведении к общему знаменателю числитель оборачивается в . Это можно также увидеть из тригонометрических подстановок , но итог тот же.
Обозначим
Тогда
Из задачи № 2 мы уже нашли аналогичную производную для . Результат был:
Отсюда
Общий метод: использовать стандартные правила дифференцирования (суммы, произведения, частного, цепочки) и таблицу производных элементарных функций и т.д.).
Все производные получены с учётом правил дифференцирования и упрощены.