可持续旅游建模分析
Creato il: 24 gennaio 2025
Creato il: 24 gennaio 2025
Juneau, Alaska, USA with a population of about 30,000 residents, set a record in 2023 with 1.6 million cruise passengers, hosting as many as seven large cruise ships on the busiest days, with upwards of around 20,000 visitors. [1] While these tourists bring in substantial revenue for the city, on the order of $375 million, [2] they also bring issues related to overcrowding that have the city working to limit the number of guests. Ironically, Mendenhall Glacier, one of the premier attractions in Juneau, has been receding, primarily due to warming temperatures caused, in part, by overtourism. The glacier has receded the equivalent of eight football fields since 2007, leading many locals to worry that the tourists and associated revenue will eventually disappear with the glacier. [3] Fortunately, Juneau has other attractions, including whale watching and rain forests, and can maintain their status as a tourist destination, provided they can develop and enact a plan for sustainable tourism.
Recent reports[4] have highlighted the hidden costs of tourism and the growing need to account for and manage these costs to protect natural and cultural resources and build a sustainable tourism industry on which numerous communities around the world depend. These hidden costs include pressure on local infrastructure including drinking water supplies, waste management, and an overall increased carbon footprint in tourist destinations, many of which lie in environmentally sensitive regions. Local populations are also under pressure due to housing supplies and costs, overcrowding, and rowdy tourists. Various measures have been enacted to attempt to ease the burden, including increased hotel taxes, visitor fees, caps on the number of daily visitors, and restrictions on alcohol sales and consumption. Additional revenue from taxes have been used to support conservation, make improvements in infrastructure, and develop community programs. While many locals that depend on tourism are concerned that additional fees might drive tourists away and would rather see the numbers, and their businesses, grow, many other locals are becoming disgruntled and either leaving or protesting against tourists.
1.Build a model for a sustainable tourism industry in Juneau, Alaska. You may want to consider factors such as the number of visitors, overall revenue, and measures enacted to stabilize tourism. State clearly which factors you are optimizing, and which factors serve as constraints. Include a plan for expenditures from any additional revenue and show how these expenditures feed back into your model to promote sustainable tourism. Include a sensitivity analysis and discuss which factors are most important.
现在我要对这个问题进行定量化的建模以及分析,你觉得我需要就哪些方面进行何种方式的建模?在查阅相关资料的时候,我需要确定哪些关键字?
在为朱诺 (Juneau) 的可持续旅游业构建定量化模型并进行分析时,通常需要从多角度、多学科的视角来考量。以下内容将从可能的建模方向和文献检索的关键关键词两方面进行说明,帮助你梳理建模思路并明确需要重点关注的资料检索方向。
宏观层面:系统动力学 (System Dynamics) 模型
微观/部门层面:优化模型 (Optimization Model) 或多目标规划 (Multi-objective Optimization)
基于投入产出 (Input-Output) 或经济模型 (Econometric Model) 的区域经济影响评估
生态足迹 (Ecological Footprint) 或生命周期分析 (Life Cycle Assessment)
社会学调查与满意度模型
在检索文献、政府报告或学术论文时,下面这些中英文关键词可帮助你更快找到相关的研究成果及数据来源。根据研究侧重点的不同,可以灵活选用并搭配使用。
明确研究目标与范围
设定核心变量与约束
数据收集与指标量化
分析与结果解读
在对朱诺的可持续旅游进行定量化建模时,需要结合多个层面的数据与分析方法,既要考虑旅游业带来的经济效益,也要重视环境影响和社会满意度的平衡。
在检索文献时,可以利用上文列出的关键词,尤其关注“旅游与环境可持续发展的平衡”、“环境承载力研究”、“生态足迹与碳排放分析”等主题,以寻求已有的理论和实证数据支持。希望这些建议能帮助你更系统地开展定量分析工作。祝研究顺利!
Based on the provided documents, the analysis, modeling, and computation of sustainable tourism in Juneau, Alaska, should be approached using a multi-objective optimization framework that considers the environmental, social, and economic dimensions of tourism. Below is a detailed modeling approach, including key equations and their meanings.
The modeling should focus on the sustainable carrying capacity of Juneau’s tourism industry using a multi-objective optimization model. The goals of the model should include:
Decision Variables:
Objective Functions:
Economic Revenue Maximization:
where:
: Revenue per mainland tourist, : Revenue per overseas tourist.
Employment Rate Maximization:
where are the number of tourists (mainland and overseas), and is the employment increase per tourist.
Carrying Capacity Maximization:
This function ensures the balance between the number of tourists and the local population.
Constraints:
Revenue Equation (Eq. 9-10):
Employment Equation (Eq. 11):
Carrying Capacity Equation (Eq. 12-13):
Data Collection:
Model Implementation Using NSGA-II Algorithm:
Sensitivity Analysis:
Sensitivity analysis will identify which parameters have the greatest impact on sustainability:
Based on the model's output, policy recommendations can include:
This multi-objective optimization framework provides a comprehensive approach to balancing tourism's economic, environmental, and social impacts in Juneau. By applying the improved NSGA-II algorithm and conducting sensitivity analysis, stakeholders can make informed decisions on sustainable tourism development.
请把上述内容用中文告诉我
根据提供的文献,可持续旅游的研究重点应放在环境承载力的多目标优化上。研究改进了NSGA-II(非支配排序遗传算法),用于优化旅游环境的承载力,最大化经济收入,同时最小化环境压力和最大化社会效益。因此,我们可以基于该模型提出以下详细的建模思路、方程以及计算方法。
我们可以将朱诺的可持续旅游问题建模为一个多目标优化问题(Multi-objective Optimization Problem, MOP),目标包括:
决策变量:
约束条件:
(1) 经济收入最大化:
(2) 就业率最大化:
(3) 旅游承载力最大化:
(1) 资源消耗与承载力约束:
(2) 生态影响约束(碳排放、水资源消耗等):
(3) 社会满意度约束:
数据收集与预处理:
使用改进的 NSGA-II 算法进行求解(文献):
初始化种群: 根据游客、居民数量随机生成初始解
交叉变异操作: 采用改进的交叉变异概率调整公式
其中:
拥挤度排序 选择最优解:
其中:
生成 Pareto 最优解: 选择不同权重组合,确定最终可行解
敏感性分析:
基于文献中的改进 NSGA-II 算法,我们可以为朱诺的可持续旅游发展建立合理的数学模型,平衡经济收益、环境保护和社会满意度,并提供优化政策建议。该模型可用于政策决策者在未来做出科学的旅游管理决策,确保城市的长期可持续发展。
我还是不太能理解这个算法的主要内容。你可以从根源讲一讲这个算法的理论是什么,又是基于什么样的思想提出的,讲讲它的底层逻辑吗?
下面我将从多目标优化理论的根源讲起,介绍 NSGA-II(Non-dominated Sorting Genetic Algorithm II)算法的底层思想和工作原理,以帮助你理解它为何以及如何用来解决多目标优化问题(例如可持续旅游中的“经济-环境-社会”三重目标)。
什么是多目标优化?
在很多现实场景里,我们往往需要同时优化多个相互冲突的目标,例如:
多目标优化问题可以表达为:
在满足一系列约束的条件下,同时优化多个目标函数 。
Pareto 最优解与 Pareto 前沿 (Pareto Front)
遗传算法的灵感:
遗传算法来自对生物进化和自然选择的模拟。生物个体的基因在繁衍后代的过程中,通过选择、交叉、变异等过程不断进化,使物种适应环境。
遗传算法的关键步骤:
多目标遗传算法的问题:
NSGA-II 的核心改进:
NSGA-II(Deb 等人在 2002 年提出)是对早期 NSGA 算法的重大改进,主要体现在:
初始种群生成:
非支配排序与拥挤度计算:
选择操作 (Selection):
交叉与变异 (Crossover & Mutation):
生成子代并合并 (Elitism):
迭代至收敛:
保留非支配解:
平衡收敛性与多样性:
理论与实践广泛认可:
简而言之,NSGA-II 在底层逻辑上就是一套面向多目标的“生物进化”策略:
在可持续旅游这种牵涉到经济、社会和环境三重目标的应用场景中,NSGA-II 能够让你一次性得到一系列平衡了不同目标的方案(Pareto Front),之后再根据政策或利益相关方的诉求,选择最合适的解决方案。
Indices, parameters, and decision variables used in the mathematical model.
Indices, parameters, and decision variables分别代表什么?
在建立数学模型(例如可持续旅游的多目标优化模型)时,我们通常会用到索引(Indices)、**参数(Parameters)和决策变量(Decision Variables)**这三个概念。它们在模型中的角色分别如下:
定义:索引用来对数据或变量进行分类、标识或遍历,使模型能够灵活地针对不同类别、时段、地点等进行表达。
常见示例:
作用:在模型的方程中,需要在不同索引上“遍历”或“求和”时,就会用到这些符号来表示“对哪些范围的变量或参数进行计算”。
定义:参数是模型中已经确定且不随模型决策改变的常数或外部给定数据。它们往往来自于历史数据、统计数据、文献、政策规定等,可以在模型运行前就被确定。
常见示例:
作用:这些参数是已知的输入,在模型中通常以常数形式参与运算,例如在目标函数或约束中使用。
定义:决策变量是模型要求解的未知量,通过优化算法来决定它们的最优取值。决策变量往往代表了决策者可以控制或调整的东西。
常见示例:
作用:
在一个典型的可持续旅游多目标模型中,方程大致形如:
通过这种模式,我们就能对模型进行清晰的结构化描述,并将其输入到求解器(或算法)中进行优化。
它们三者在数学模型中相辅相成,共同构成一个可用于分析和求解的优化框架。
下面我们以文中给出的改进型 NSGA‐II 算法为主线,逐段说明其建模思路、各个公式的含义及由来。为方便理解,我会按照文中出现的公式顺序进行讲解,并结合对应段落的背景描述其作用。
从文中的 Fig.1(NSGA-II 算法流程图)可以看到,算法整体分为以下步骤:
初始化种群 (Initialize population)
随机产生一定规模的初始解(个体),每个解由决策变量组成。
选择 (Selection)、交叉 (Crossover) 与变异 (Variation)
对种群进行进化操作,产生子代种群。
种群合并 (Population merging)
将父代种群和子代种群合并。
非支配排序 (Non-dominated sorting) 与拥挤度计算 (Crowding distance)
对合并后的种群进行快速非支配排序和拥挤度计算,根据优劣筛选出下一代最优个体。
生成新种群 (Generate new species group)
得到新一代种群后,判断是否达到预设代数/收敛条件。若未结束,则 Gen ← Gen + 1,重复进化。
文中提到的改进点主要在于:
含义:
由来:
含义:
由来:
含义:
由来:
含义:
由来:
含义 (公式 6):
含义 (公式 7):
由来:
含义:
由来:
通过这几方面的改进,改进型 NSGA-II 在解决多目标优化(如城市旅游可持续发展中的环境、经济、社会多目标)时,更有可能在Pareto 前沿上取得分布均匀、收敛更优的解。
这就是文中各段内容、各个公式背后的原理与来历,希望能帮助你清楚理解这些改进如何在 NSGA-II 框架下协同运作。
你能在讲解公式的同时把原文翻译一下吗,我想结合原文一起来看看这些公式
下面是一份“原文逐段翻译 + 公式解读” 的结合说明。为方便阅读,我将先贴出原文英文内容(根据截图整理)并进行中文翻译,然后在每一段后面给出简要解读,包括公式的由来和意义。
英文原文
3. A sustainable development model for urban tourism based on multi-objective optimization of environmental carrying capacity3.1. Multi-objective optimization based on improved NSGA-II algorithm
In practical engineering applications, decisions on a solution are often constrained by several factors, i.e. they can only be accomplished with a multi-objective design. For multiple objectives, there are often certain differences, so it is necessary to find the most optimal design that satisfies multiple criteria, i.e. a multi-objective optimization problem. Traditional multi-objective optimization algorithms are mostly single-objective optimization with strong limitations [14]. Non-dominated Sorting Genetic Algorithm II (NSGA-II), as one of the more widely used traditional multi-objective optimization algorithms, has the advantages of stable results of multiple calculations and high solution accuracy, but it has the problems of poor global search ability, large randomness of results, and premature convergence of the algorithm.
The NSGA-II algorithm first randomly generates the initial population and processes the initial population in the solution space by crossover, variation and other operations to obtain the corresponding subpopulation. Then the two parts of the subpopulations are combined, i.e. the child subpopulation and the parent subpopulation. The new generation population is then obtained by evaluating individuals using the crowding comparison operator and non-dominated sorting methods, and using an elite strategy to filter the population, thereby recovering the population size. Finally, the NSGA II algorithm is compared with the termination condition to decide whether to stop the operation.
中文翻译
3. 基于环境承载力多目标优化的城市旅游可持续发展模型
3.1. 基于改进 NSGA-II 算法的多目标优化
在实际的工程应用中,对一个解进行决策往往受到多种因素的约束,也就是说,这些决策只能通过多目标的设计才能完成。对于多个目标,常常存在一定程度的差异,因此需要找到能同时满足多个评价标准的最优设计,也就是一个多目标优化问题。传统的多目标优化算法大多是基于单目标优化,存在较强的局限性 [14]。非支配排序遗传算法 II(NSGA-II)作为被广泛使用的传统多目标优化算法之一,具有多次计算结果稳定、求解精度高等优点,但也存在全局搜索能力不足、结果随机性大以及算法过早收敛等问题。
NSGA-II 算法首先随机生成初始种群,然后通过交叉、变异等操作在解空间中对初始种群进行处理,得到相应的子种群。随后,将子种群和父种群这两部分合并,并通过拥挤比较算子与非支配排序等方法对个体进行评估,运用精英策略筛选群体,从而使种群规模得以恢复。最后,将 NSGA-II 算法的结果与终止条件进行比较,以决定是否停止运行。
解读
英文原文
From the flowchart of the NSGA-II algorithm in Fig. 1, it is clear that the crossover, variance and elite strategies are the main parts that affect the performance of the algorithm. Therefore, the study improves the algorithm accordingly while retaining the crowding comparison operator, crowding and fast dominance ranking methods. The crossover variation probabilities in the NSGA-II algorithm are set in the same way as in the genetic algorithm and are invariant, which greatly increases the probability that the results obtained by the algorithm fall into a local optimum [15]. To avoid the computational errors caused by fixed parameters, an adaptive approach is adopted to adjust accordingly, and the adaptive crossover probability formula is shown in equation (1).In equation (1), is the crossover probability, represents the current evolutionary generation, is the total number of evolved generations, and and are the predetermined upper and lower limits of the crossover probability, respectively. It can be seen that this adaptive crossover probability method does not closely link the current population information to the evolutionary algebra, increasing the likelihood that individuals with poor solution characteristics will be retained at a later stage. To enhance the relevance of the population individuals to the adaptive adjustment, the resulting adjustment formula for the adaptive crossover probability is shown in equation (2).
中文翻译
从图 1 中 NSGA-II 算法的流程图可以看出,交叉、变异以及精英策略是影响该算法性能的主要部分。因此,在本研究中,保留了拥挤比较算子、拥挤度和快速支配排序方法的基础上,对算法进行了相应的改进。
在 NSGA-II 算法中,交叉变异概率与遗传算法的设定方式相同,并且是固定不变的,这很大程度上增加了算法陷入局部最优的概率 [15]。为了避免由固定参数所导致的计算误差,本研究采用了一种自适应(Adaptive)的方式来进行相应调整,公式 (1) 给出了自适应交叉概率的表达式:在公式 (1) 中, 表示在第 代的交叉概率; 表示当前进化代数; 为进化的总代数; 和 分别是交叉概率的预设上限和下限。可以看出,这种自适应交叉概率方法并没有将当前种群信息与进化代数紧密结合,这会增加在后期保留劣质个体的可能性。为了增强种群个体对自适应调整的相关性,文中给出了公式 (2) 进一步的修正方式。
解读
英文原文
In equation (2), and are the minimum and maximum values of the objective function corresponding to the individuals in the population, respectively, while represents the average value of the objective function corresponding to all individuals in the population. The adaptive variation probability formula is shown in equation (3).
In equation (3), represents the mutation probability, and and are the upper and lower limits of the established probability of variation. In order to combine the probability of variation with information about the individuals in the population, the adjusted variation probability formula is shown in equation (4).
中文翻译
在公式 (2) 中, 和 分别表示种群中个体对应目标函数值的最小值和最大值,而 表示种群中所有个体目标函数值的平均值。随后,文中给出了自适应变异概率的公式 (3):
在公式 (3) 中, 表示在第 代的变异概率, 和 分别是设定的变异概率上限与下限。为了将变异概率与种群个体信息相结合,作者给出了公式 (4) 来对变异概率进行修正。
解读
英文原文
In equation (4), represents the adjusted probability of variation. According to the adjusted cross-variance probability formula, it can be seen that at the early stage of algorithm evolution, the difference between individuals is expressed through the objective function value, while the maximum and minimum values are different at this time, and the average objective function value is equivalent to the average of the two. Therefore, the probability of cross-variance is larger at the beginning of the algorithm and finding the optimal solution set becomes easier at the beginning. At the later stages of the algorithm, the number of individuals with larger objective function values is extremely small, again facilitating the search for the optimal solution set.
The variational operator of the NSGA-II algorithm is then improved, as the variational operator of the NSGA-II algorithm is more stochastic in its local search for the optimal set, as it has no dependence on the information of other individuals in the population. It is therefore improved by introducing a differential evolution algorithm, as shown in equation (5).
中文翻译
在公式 (4) 中, 表示修正后的变异概率。根据这一自适应交叉-变异概率公式可知,在算法的早期阶段,种群个体之间的差异由目标函数值体现;此时最大值与最小值并不相同,而平均值大致相当于两者的中间值,所以在算法初期交叉变异的概率会比较大,使得更容易在初期搜索到较优解。在后期阶段,拥有较大目标函数值的个体很少,再次有利于收敛到最优解集。
此外,为了改进 NSGA-II 算法的变异算子(NSGA-II 自身在局部搜索方面具有一定的随机性,并且不依赖于其他个体的信息),作者引入差分进化(DE)来增强变异能力,其形式如公式 (5) 所示:
解读
英文原文
In equation (5), represents the scaling factor, is the number of evolutionary generations, and is the best individual in the generation with the sequence . The formula for defining the crossover operator of the NSGA-II algorithm is shown in equation (6).In equation (6), represents the crossover factor, which is a deterministic constant. represents two parent individuals, and and correspond to the chromosomes of the two parent individuals. The children in the current crossover operator inherit the best individuals from their parents, but the global search performance remains weak, resulting in overpopulation of the best solutions and a lack of population diversity. Therefore, the value of was redefined to retain individuals of high rank, as shown in equation (7).
中文翻译
在公式 (5) 中, 表示缩放因子; 为进化代数; 是第 代中的最优个体。接下来,NSGA-II 的交叉算子定义如公式 (6) 所示:
在公式 (6) 中, 表示交叉因子,是一个确定性的常数。 和 分别代表两个父代个体,而 则是这两个父代个体的染色体。当前交叉算子中的子代继承了父母中较好的基因,但全局搜索能力依然较弱,容易导致最优解过度集中而缺乏种群多样性。为此,作者对 的取值进行了重新定义,以保留更高等级(Rank)的个体,具体见公式 (7)。
解读
英文原文
In equation (7), is the non-dominated ranking level of individual A and is the non-dominated ranking level of individual B. By combining with the non-dominated ranking levels, the diversity is enriched and individuals with high-ranking levels are retained. The final refinement of the elite strategy was carried out. The retention of individuals by the original elite strategy was done through the non-dominated hierarchy, i.e. if the initial population size exceeded the number of individuals in the first hierarchy, individuals with excellent crowding characteristics were derived from the next hierarchy until the original population size was reached after the population was populated. However, the selection of populations is prone to the problem that individuals in populations in tiers other than the first are not very different, thus affecting the local search for excellence. Therefore, a deeper enrichment of the diversity of the populations is required, the rationale for which is shown in Fig. 2.
The modified elite strategy selects individuals in the other tiers proportionally on the basis of retaining the individuals in the first tier, i.e. the smallest individuals in the non-dominated tier, as shown in equation (8).
In equation (8), represents the maximum value in the non-dominated stratum, represents the population size, represents the stratum number, and represents the number of individuals selected from the stratum . The improved elite strategy starts with selection from the second stratum, which entails retaining as many individuals from populations lower in the ranking stratum as possible, which results in different ratios of individuals selected in other strata, enriching the diversity of the population and further enhancing the local search for excellence.
中文翻译
在公式 (7) 中, 和 分别表示个体 A 与个体 B 在非支配排序中的层级。通过将 与这两个层级值结合,不仅能丰富种群多样性,也能保留排名较高的个体。随后,作者对精英策略做了最后一步改进。原本的精英策略是按照非支配层级进行保留:如果初始种群规模大于第一层的个体数量,则从下一层中选出拥挤度表现优秀的个体,依此类推,直到恢复到原有种群规模。然而这样做会出现另一个问题:第一层之外的群体差异不明显,不利于在局部范围内搜索更优解。因此,需要进一步加深种群多样性的富集度(图 2 给出了相应的示意)。
改进后的精英策略是在保证第一层个体保留的前提下,按比例从其他层中选取个体(即在非支配层中选取数量较少的个体),公式 (8) 所示:
在公式 (8) 中, 表示非支配层的最大层数, 表示种群规模, 表示层级编号, 表示从第 层选取的个体数量。改进后的精英策略从第二层开始选择尽可能多的个体,因而在其他层也会有不同比例的个体被选出,从而进一步丰富了种群的多样性,并提升在局部范围内的搜索表现。
解读
通过以上翻译与解读,可以看到文中改进型 NSGA-II 的核心思路如下:
自适应交叉与变异概率 (公式 1~4):
引入差分进化算子 (公式 5):
交叉算子中加入非支配等级权重 (公式 6, 7):
改进精英策略 (公式 8):
这些改进综合起来,力图解决原版 NSGA-II 中“易陷入局部最优、群体多样性下降以及后期搜索效率不高”等问题,更好地应用于城市旅游环境承载力的多目标优化场景。希望以上“原文翻译 + 公式解读”能帮助你更清晰地理解论文中各公式的来龙去脉。
下面我会按照文献的结构,先贴出英文原文(带中文翻译),然后以通俗易懂的方式说明改进后的 NSGA-II 算法是如何被具体应用到“城市旅游环境承载力”的可持续发展模型中的。重点在于:** 算法如何结合所提出的多目标、指标体系和约束条件**,并在最后输出最优的旅游接待策略或决策方案。
下面是文中(结合图 3、图 4 以及对应段落)的重要说明,描述了作者在建立环境承载力多目标模型后,如何将改进后的 NSGA-II 应用到求解过程。
English (from the paper)
“After the improvement of the NSGA-II algorithm, the sustainability indicators of environmental carrying capacity should be determined. The construction of the indicator system should be centered on the core interest subjects, and among the core interest subjects of the urban tourism environment, the government, urban residents, tourism enterprises and tourists occupy a dominant position [16]. … Therefore, according to the interests of the core interest subjects, the indicators obtained include the natural tourism environment, social tourism environment and economic tourism environment, as shown in Fig. 3.”
中文翻译
“在对 NSGA-II 算法进行改进后,首先要确定环境承载力的可持续指标。该指标体系的构建以核心利益主体为中心,而在城市旅游环境的核心利益主体中,政府、城市居民、旅游企业和游客处于主导地位 [16]。……因此,根据这些核心利益主体的诉求,最后得到的指标包括自然旅游环境、社会旅游环境和经济旅游环境,具体如图 3 所示。”
简要解读
English (from the paper)
“Based on the core interest subjects and indicator system, the sustainable objectives of environmental carrying are identified as maximized economic income, maximized number of urban residents and tourists, and maximized employment rate of urban residents, and the objective function is constructed from this (Fang R. 2019) [17]. The maximized economic income is the maximization of the income received by the tourism site and is closely related to the number of tourists, as shown in equation (9)… In equation (12), x3 is the number of subjects to be accommodated… Through a system of indicators for the tourism environment, taking into account both economic incomes, the number of subjects accommodated and the employment rate of urban residents, the general constraint is obtained as shown in equation (13).”
中文翻译
“基于核心利益主体和指标体系,将环境承载力的可持续目标确定为:最大化经济收入、最大化城市居民与游客数量以及最大化城市居民的就业率,并按照文献 [17] 的思路构建了目标函数。最大化经济收入指的是旅游目的地所获得收入的最大化,其与游客人数密切相关(见公式 (9))。
在公式 (12) 中,x3 表示可容纳的主体数量……通过一个涉及旅游环境的指标体系,综合考虑了经济收入、可容纳的主体数量和城市居民就业率,最终得到公式 (13) 所示的总体约束。”
简要解读
English (from the paper)
“Therefore, the study established a specific indicator system for the sustainable carrying capacity of urban tourism environment based on the perspective of the core interest subjects, pointed out three specific goals to achieve the sustainable carrying capacity of urban tourism environment … and constructed a multi-objective optimization model for the sustainable carrying capacity of urban tourism environment. Finally, the research can use the improved NSGA-II algorithm to solve the multi-objective optimization model, so as to achieve the multi-objective optimization of the sustainable carrying capacity of Urban tourism environment… The improved NSGA-II algorithm sets parameters in the initialization process to be based on the number of overseas tourists, mainland tourists and town residents, and the initialised individual information is generated randomly. The crowding distance comparison operator makes the populations of environmental carrying capacity seeking with diversity and distribution, and the crowding distance formula is shown in equation (14).”
中文翻译
“因此,本研究从核心利益主体的角度出发,为城市旅游环境的可持续承载力建立了一套具体的指标体系,并明确了实现城市旅游环境可持续承载力的三个具体目标……同时构建了城市旅游环境可持续承载力的多目标优化模型。最终,研究者可以使用改进后的 NSGA-II 来对该多目标优化模型进行求解,从而实现对城市旅游环境可持续承载力的多目标优化……在改进 NSGA-II 算法的初始化过程中,需要根据海外游客、国内游客和城市居民的人数设定相关参数,并随机生成初始个体信息。通过拥挤度比较算子,可以使环境承载力搜索过程在解空间中具备多样性和分布性,其拥挤度计算公式见 (14)。”
English (from the paper)
“ (14) … The individuals in the population have crowding distances and non-dominance ranks, and the ranking is based on the dominance relationships exhibited between individuals, as shown in Fig. 4. The improved NSGA-II algorithm uses the biased order relationship as the basis for classification and its dominance relationship is shown in equation (15). … Therefore, the improved NSGA-II algorithm in urban tourism environment carrying capacity needs to firstly obtain the decision variables by means of real number coding, then calculate the values of individuals on the constructed objective function, then perform the merit search and judge whether the generated objective function meets the established requirements, and finally check whether it meets the termination conditions to decide whether to output the Pareto solution set.”
中文翻译
“(公式 (14))……种群中的个体具有拥挤度和非支配等级,算法根据这些个体间的支配关系进行排序,如图 4 所示。改进后的 NSGA-II 算法使用带偏序的排序关系来进行分类,其支配关系见公式 (15)。……因此,该改进 NSGA-II 在应用于城市旅游环境承载力时,需要先用实数编码来获得决策变量,再在所构建的目标函数上计算各个体的数值,接着进行优劣筛选并判断生成的目标函数是否符合既定要求,最后检查是否满足终止条件,以决定是否输出帕累托解集。”
简要解读
综合以上文本,整个应用流程可以分为以下几步:
确定指标与目标:
构建数学模型:
用改进的 NSGA-II 来求解:
决策者选取方案:
通过这种方式,改进后的 NSGA-II 就被实际应用到“城市旅游环境承载力”的多目标优化问题中,帮助平衡经济发展与资源环境保护,实现可持续旅游。
下面分成两部分进行回答。第一部分先用通俗易懂的话来解释一下图 4(“Congestion distance map”)大概在做什么,如果它是在进行数据分析,又是如何帮助我们理解解的分布状况。第二部分则根据我们从文献片段中获得的信息,尽可能完整地列出该论文中的所有主要公式,并给出对应的 LaTeX 书写形式(有些公式的具体形态可能在原文中未完全展示,这里仅整理我们已知的部分)。
以下公式是根据文献片段中出现的编号进行整理,力求将已见到的主要数学表达式都列出来,并标示出它们在原文中的编号。由于我们并没有论文全文的全部页面,若有缺失或在某些公式里尚未给出具体参数定义,敬请谅解。
(1) 自适应交叉概率(线性衰减形式)
latex\begin{equation} P_{o}(g) = P_{o_{\max}} - \bigl(P_{o_{\max}} - P_{o_{\min}}\bigr)\times \frac{g}{\text{gen}} \tag{1} \end{equation}
(2) 自适应交叉概率(基于群体适应度的改进)
latex\begin{equation} P_{o} = \begin{cases} P_{o_{\min}} - \dfrac{f_{\max} - f_{\text{avg}}}{\,f_{\max} - f_{\min}\,} \,\bigl(P_{o_{\max}} - P_{o_{\min}}\bigr), & \text{if } f_{\min} \neq f_{\text{avg}},\$$8pt] P_{o_{\max}}, & \text{if } f_{\min} = f_{\text{avg}}, \end{cases} \tag{2} \end{equation}
(3) 自适应变异概率(线性衰减形式)
[ P_{v}(g) = P_{v_{\max}}
- (P_{v_{\max}} - P_{v_{\min}}) \times \frac{g}{\text{gen}} \tag{3}
latex\begin{equation} P_{v}(g) = P_{v_{\max}} - \bigl(P_{v_{\max}} - P_{v_{\min}}\bigr) \times \frac{g}{\text{gen}} \tag{3} \end{equation}
(4) 自适应变异概率(基于群体适应度的改进)
latex\begin{equation} P_{v} = \begin{cases} P_{v_{\min}} - \dfrac{f_{\max} - f_{\text{avg}}}{\,f_{\max} - f_{\min}\,} \,\bigl(P_{v_{\max}} - P_{v_{\min}}\bigr), & \text{else},\$$8pt] P_{v_{\max}}, & f_{\min} = f_{\text{avg}}, \end{cases} \tag{4} \end{equation}
(5) 差分进化更新公式
[ x_i(1+g) = \bigl(x_r(g) - x_{r_2}(g)\bigr) \times F
- x_{\text{best}}(g) \tag{5}
latex\begin{equation} x_i(1+g) = \bigl(x_r(g) - x_{r_2}(g)\bigr)\times F + x_{\text{best}}(g) \tag{5} \end{equation}
(6) 原交叉算子
latex\begin{equation} \begin{cases} X_A^{t+1} = (1 - \alpha)\,X_B^t + \alpha\,X_A^t,\$$6pt] X_B^{t+1} = (1 - \alpha)\,X_A^t + \alpha\,X_B^t \end{cases} \tag{6} \end{equation}
(7) 动态交叉因子
[ \alpha = \frac{\text{rankA}}{\text{rankB} + \text{rankA}} \tag{7}
latex\begin{equation} \alpha = \frac{\text{rankA}}{\text{rankB} + \text{rankA}} \tag{7} \end{equation}
(8) 改进精英策略的分层保留公式
latex\begin{equation} N_i = \frac{2\bigl(1 + M - i\bigr)\,\bigl(N - N_1\bigr)} {\bigl(M - 1\bigr)\,\bigl(2 + M\bigr)} \tag{8} \end{equation}
在文献中,还提到从 (9) 到 (12) 用来表示经济收入、社会就业、容纳人数等目标函数,以及部分资源约束。我们在片段里未见到具体的 (9)~(11) 公式主体,这里仅列示已出现的片段:
latex\begin{equation} \sum_{j=1}^{n} \Bigl(\frac{1}{\lambda_{ij}}\cdot x_{ij}\cdot a_{ij}\Bigr) \,\geq\, \bigl[\theta_i \,(1 - e_i) + e_i\bigr] \;\cdot D_i \;\cdot h_i \tag{13} \end{equation}
(14) 拥挤度距离公式
latex\begin{equation} P[i]_{\text{dis tan ce}} = \sum_{n=1}^{r} \Bigl( f_n[i+1]\cdot P - f_n[i-1]\cdot P \Bigr) \tag{14} \end{equation}
(15) 个体间的偏序支配关系
latex\begin{equation} i \succ j \quad \text{if}\quad \bigl(i_{\text{rank}} = j_{\text{rank}}\;\text{or}\; i_{\text{rank}} < j_{\text{rank}}\bigr) \;\wedge\; P[i]_{\text{dis tan ce}} \;>\; P[j]_{\text{dis tan ce}} \tag{15} \end{equation}
(16) 文中只说“the expression of the affiliation function under the tourism environment constraint is shown in equation (16)”,但我们并没有见到它的具体形式,故暂无法列出。
以上即是图的直观解释和论文公式的汇总及其 LaTeX 代码。希望能帮助你从整体上理解论文中“拥挤度计算”以及“改进 NSGA-II”在可持续旅游环境承载力模型中的应用。
现在,也是最重要的一步,我们已经有了某个地区的当地居民人口数量、每年来此地旅游的人流量、当地每年通过旅游创造出的总收入、当地每年用于保护与优化环境的支出、当地环境的美好(或恶劣)程度(用一个数值来指代),我们要如何利用上述算法来计算出我们权衡旅游业开发和保护环境的最优解呢?请以一种较为通俗的方式讲解。
下面以通俗易懂的方式,结合我们已有的数据与“改进 NSGA-II”算法的思路,告诉你如何在“旅游业开发”和“环境保护”之间取得一个平衡的最优解。
这些可控的“量”就是决策变量。模型要“寻找这些变量的组合”,使得在经济收益和环境保护等目标之间取得最佳平衡。
一般会有多目标,最常见的有:
最大化经济收益
最小化环境损害/最大化环境质量
社会方面的指标(可选)
对一个地区来说,最典型的“双目标”或“三目标”都可以,这里为了简单,就用“经济 & 环境”两个核心目标来举例说明。
这些约束会限制“决策变量”不能无边界扩张(比如游客不能无限制增长,否则环境就崩溃)。
初始化种群:
计算目标函数值:
非支配排序 & 拥挤度:
交叉与变异:
精英策略保留:
一句话概括:我们先把问题“公式化”,再由改进 NSGA-II 这个“多目标进化算法”帮忙,在众多方案中找出一条“最优边界线”,让我们在“开发旅游”与“环境保护”之间拥有多种可行的平衡选择,并最终做出明智决策。
现在假设我们的决策变量包括:用于维护环境所运用到的支出、用于改造旅游业所用到的支出、所控制的游客的最大数量,而这些决策变量会影响:当地居民生活满意度、当地居民的就业率、该地区每年度的旅游业收入、该地区的环境美好程度。我们需要如何找到这些决策变量之间的关系,进而使用该算法进行规划呢?举个例子描述一下
下面用一个通俗化、举例的方式,演示如何把“环境投入”“旅游改造投入”“游客上限”这三个决策变量和“居民满意度”“就业率”“旅游收入”“环境质量”这四个结果指标之间的关系,抽象成数学模型,进而使用诸如“改进 NSGA-II”这样的多目标优化算法来进行规划。
决策变量
结果指标(产出/状态变量)
现实中,这些关系往往比较复杂,包含社会、经济、生态等方面的交互。但为了说明原理,我们可以先做一些合理的简化和假设,用简单的函数来体现变化趋势。
注意:这些函数形式不一定就是线性的,也可能是非线性的(如对数函数、指数函数、阈值效应等)。在实际研究中,需要根据调研数据或文献回归来估计系数。这里仅作示例。
合理直觉:
一个可能的“线性”简化表达(仅作示例):
其中 都是正/负系数, 是基准满意度。
合理直觉:
可能的简化表达:
通常,为了把 控制在 0~1 或 0%~100% 区间,可能需做一些归一化或比例换算。
合理直觉:
可能的简化表达:
或者把“环境投入”部分当作支出,从收入里扣除。如果要更精细,还能分“总收入”与“净收益”。
合理直觉:
可能的简化表达:
在实际场景中,你也可以只选其中 2~3 个主要目标,比如“收入最大”“环境最好”“居民满意度最高”等,作为多目标进行折中。
初始化种群
计算目标函数
非支配排序 + 拥挤度评估
交叉变异
代际进化
输出 Pareto 最优解
假设我们写下下面这些非常简化的假函数(只为举例):
并设置约束:
让改进 NSGA-II 来搜索后,你也许会得到几种代表性解:
具体选择哪个方案,就要看你的偏好和实际规划目标。
这样,就完成了对“用于维护环境支出”“用于旅游改造支出”“控制游客数量”等决策变量的规划过程,并在“居民满意度”“就业率”“旅游收入”“环境质量”之间取得可视化与量化的平衡。
那么确定这些系数又是如何进行的?是通过对往年该地区这些数据的分析得到的吗?利用回归分析?
通常情况下,确定决策变量与结果指标之间的系数确实需要依赖历史数据、调研数据或专家经验来进行估计。下面就以回归分析为例,说明在实践中是如何“从历史数据”推导出那些用于模型的系数的。
历年投入与产出数据
形成一个时序或面板数据集
数据预处理
假设我们关注“某个结果指标”如何受几个决策变量影响,就可以分别对每个结果指标建一个回归方程。例如,要估计
举个简化的例子:假设我们有 8 年数据,每年都观测到以下量表:
年份 | 环保投入 | 旅游改造投入 | 游客数 | 居民满意度 | 就业率 | 旅游收入 | 环境质量 |
---|---|---|---|---|---|---|---|
1 | 50 | 20 | 60 | 62 | 51.2 | 65 | 73 |
2 | 60 | 30 | 65 | 64 | 52.1 | 70 | 75 |
3 | 70 | 35 | 68 | 66 | 52.5 | 73 | 77 |
… | … | … | … | … | … | … | … |
8 | 120 | 80 | 90 | 75 | 58.7 | 95 | 82 |
(数字只是虚构示例)
一句话:是的,系数多半是通过对往年数据的回归分析(或结合专家判断、机器学习)来获得的。然后再把它们用在模型里,使我们的多目标优化尽量贴近实际。