椭圆方程求解

Creato il: 7 dicembre 2024

Risposto usando O1 da Chat01

Domanda

已知椭圆C:y^2/a^2 + x^2/b^2 = 1, (a > b > 0), F1(0, -√5)是C的一个焦点,D(-4/3, -√5)是C上一点,R为C的左顶点,直线y=y0(y0≠0)与C交于不同的两点P,Q。求C的方程。直接写出这个方程。

Pensiero

Breaking down the equation

I'm working through an ellipse equation in the form of y²/a² + x²/b² = 1. With the major axis along the y-axis and F1 (0, -√5) as a focus, I find c = √5 and a² - b² = 5.

Identifying key elements

Recognizing the major axis along the y-axis and c = √5, I set up a² - b² = 5 for the foci. This helps pinpoint essential parameters for the ellipse.

Mapping the ellipse

Locate the focus, center, and vertices on the ellipse by analyzing F1 (0, -√5), the major axis a, and the constant difference a² - b² = 5.

Solving equation pairs

I’m working through equations by substituting values and using the quadratic formula to isolate and solve for a² and b², resulting in potential solutions for B.

Thought for a few seconds

Risposta

椭圆 CC 的方程为:

y29+x24=1\frac{y^2}{9} + \frac{x^2}{4} = 1

Condividi questa Q&A