Ratios option pricing

Creato il: 2 dicembre 2024

Risposto usando O1 Preview da Chat01

Domanda

Problem 10. Ratios option in continuous time. (6 pts)
In the Black-Scholes model, using risk-neutral pricing, find the initial price of the ratios option, which has two fixed critical time spots T0T_0 and T1T_1 with T0<T1T_0<T_1. At the terminal time T1T_1, the payoff is given by HT1=ST1ST0H_{T_1}=\frac{S_{T_1}}{S_{T_0}}.

Pensiero

求解初始期权价格

简化表达

我正在展示通过对数法获取ST1ST0\frac{S_{T_1}}{S_{T_0}}的期望值,利用布朗运动的均值和方差特性。

思考,持续 15 秒

Risposta

To find the initial price V0V_0 of the ratios option, we need to compute the expected discounted payoff under the risk-neutral measure QQ. The payoff at time T1T_1 is given by:

HT1=ST1ST0H_{T_1} = \frac{S_{T_1}}{S_{T_0}}

The initial price is the expected present value of this payoff:

V0=EQ[erT1HT1]=erT1EQ[ST1ST0]V_0 = E^Q\left[ e^{-r T_1} H_{T_1} \right] = e^{-r T_1} E^Q\left[ \frac{S_{T_1}}{S_{T_0}} \right]

Under the risk-neutral measure, the stock price StS_t follows the geometric Brownian motion:

dSt=rStdt+σStdWtQdS_t = r S_t dt + \sigma S_t dW_t^Q

This implies that:

ST1=ST0e(r12σ2)(T1T0)+σ(WT1WT0)S_{T_1} = S_{T_0} e^{(r - \frac{1}{2} \sigma^2)(T_1 - T_0) + \sigma (W_{T_1} - W_{T_0})}

Therefore, the ratio ST1ST0\frac{S_{T_1}}{S_{T_0}} simplifies to:

ST1ST0=e(r12σ2)(T1T0)+σ(WT1WT0)\frac{S_{T_1}}{S_{T_0}} = e^{(r - \frac{1}{2} \sigma^2)(T_1 - T_0) + \sigma (W_{T_1} - W_{T_0})}

Since WT1WT0W_{T_1} - W_{T_0} is normally distributed with mean 0 and variance T1T0T_1 - T_0, we can compute the expected value:

EQ[eσ(WT1WT0)]=e12σ2(T1T0)E^Q\left[ e^{\sigma (W_{T_1} - W_{T_0})} \right] = e^{\frac{1}{2} \sigma^2 (T_1 - T_0)}

Thus, the expected ratio becomes:

EQ[ST1ST0]=e(r12σ2)(T1T0)e12σ2(T1T0)=er(T1T0)E^Q\left[ \frac{S_{T_1}}{S_{T_0}} \right] = e^{(r - \frac{1}{2} \sigma^2)(T_1 - T_0)} \cdot e^{\frac{1}{2} \sigma^2 (T_1 - T_0)} = e^{r (T_1 - T_0)}

Plugging back into V0V_0:

V0=erT1er(T1T0)=erT0V_0 = e^{-r T_1} \cdot e^{r (T_1 - T_0)} = e^{-r T_0}

Answer: An explicit expression: V₀ = e^( – r × T₀ )

Condividi questa Q&A