针对当前多智能体多用户的MEC环境中的AIGC任务卸载问题,本文以音频语言模型的任务卸载为例,建立了...
बनाया गया: 24 मार्च 2025
बनाया गया: 24 मार्च 2025
针对当前多智能体多用户的MEC环境中的AIGC任务卸载问题,本文以音频语言模型的任务卸载为例,建立了一个以最大化用户服务质量为主要目标的多智能体多接入边缘计算系统模型。传统多智能体强化学习方法在面对多样化的网络环境与算力需求时往往表现出非平稳性和通信问题。为克服上述挑战,本文提出了一种基于信念编码通信的多智能体协作主动推理(Multi-Agent Active Inference,MA-AIF)算法。该算法将TC-AIF算法拓展至多智能体协作场景,每个智能体采用基于多层注意力机制的通信方案有选择性地关注其他智能体的信念编码,以获得更丰富的环境理解和更精准的状态估计。与此同时,本文还通过引入基于值分解的回报分配方案,借助混合Q值网络对多个智能体间的收益进行动态调整,从而在不同资源条件和通信环境下实现更具协同性的决策过程。实验结果表明,MA-AIF在多个多接入边缘计算场景中均表现出卓越的性能与稳定性。
按照学术论文风格,翻译为英文
In the context of Multi-Agent Multi-User (MEC) environments for AIGC task offloading, this paper takes the task offloading of audio language models as an example and establishes a multi-agent multi-access edge computing system model with the primary goal of maximizing user service quality. Traditional multi-agent reinforcement learning methods often exhibit instability and communication issues when faced with diverse network environments and computational demands. To overcome these challenges, this paper proposes a Multi-Agent Active Inference (MA-AIF) algorithm based on belief-encoded communication. The proposed algorithm extends the TC-AIF algorithm to multi-agent collaborative scenarios, where each agent adopts a communication scheme based on a multi-layer attention mechanism to selectively focus on the belief encoding of other agents, thus obtaining a richer environmental understanding and more accurate state estimation. Furthermore, this paper introduces a value-decomposition-based reward allocation scheme, which leverages a hybrid Q-value network to dynamically adjust the rewards among multiple agents, enabling more coordinated decision-making under different resource conditions and communication environments. Experimental results demonstrate that the MA-AIF algorithm exhibits superior performance and stability across various multi-access edge computing scenarios.
(1)在单智能体多用户的MEC场景中,本文针对视频扩散模型任务的卸载和资源分配需求,提出了一种云边协同的卸载架构,将通信、计算、缓存资源进行联合优化。在传统强化学习研究的基础之上,本文引入主动推理与时序一致性的概念,提出了基于时序一致性的主动推理(Temporal Consistency-Based Active Inference,TC-AIF)任务卸载策略优化算法,通过对高维动态场景进行抽象,利用时序尺度上的推理预测来获得更具表征意义的低维环境信息。算法使用自监督的时间一致性方法确保了对环境变化的准确捕捉,并将主动推理与强化学习相结合,在自由能理论框架下设计了优化目标。为进一步提升学习效率,本文还提出基于自由能的经验优先回放机制,有效改变数据采样分布,最终在多个场景实验中证明TC-AIF能够实现最优的任务卸载与计算资源分配策略,缓解探索与利用和数据效率问题带来的性能影响。
按照学术论文风格翻译为英文,并保持语言简洁
In the single-agent multi-user MEC scenario, this paper addresses the task offloading and resource allocation requirements of video diffusion models by proposing a cloud-edge collaborative offloading architecture that jointly optimizes communication, computation, and caching resources. Building on traditional reinforcement learning research, we introduce the concepts of active inference and temporal consistency, proposing a Temporal Consistency-Based Active Inference (TC-AIF) task offloading strategy optimization algorithm. This algorithm abstracts high-dimensional dynamic scenes and uses temporal-scale reasoning predictions to obtain more meaningful low-dimensional environmental information. The self-supervised temporal consistency method ensures accurate capture of environmental changes, combining active inference with reinforcement learning and designing the optimization objective within the free energy theory framework. To further enhance learning efficiency, we propose a free-energy-based experience replay mechanism, effectively altering the data sampling distribution. Experimental results across multiple scenarios demonstrate that TC-AIF achieves optimal task offloading and computational resource allocation strategies, mitigating the performance impact of exploration-exploitation and data efficiency issues.
(1)在单智能体多用户的MEC场景中,本文针对视频扩散模型任务的卸载和资源分配需求,提出了一种云边协同的卸载架构,将通信、计算、缓存资源进行联合优化。在传统强化学习研究的基础之上,本文引入主动推理与时序一致性的概念,提出了基于时序一致性的主动推理(Temporal Consistency-Based Active Inference,TC-AIF)任务卸载策略优化算法,通过对高维动态场景进行抽象,利用时序尺度上的推理预测来获得更具表征意义的低维环境信息。算法使用自监督的时间一致性方法确保了对环境变化的准确捕捉,并将主动推理与强化学习相结合,在自由能理论框架下设计了优化目标。为进一步提升学习效率,本文还提出基于自由能的经验优先回放机制,有效改变数据采样分布,最终在多个场景实验中证明TC-AIF能够实现最优的任务卸载与计算资源分配策略,缓解探索与利用和数据效率问题带来的性能影响。
按照学术论文风格翻译为英文,并精简部分内容
In the single-agent multi-user MEC scenario, this paper addresses the task offloading and resource allocation needs of video diffusion models by proposing a cloud-edge collaborative offloading architecture that jointly optimizes communication, computation, and caching resources. Building on traditional reinforcement learning, we introduce active inference and temporal consistency concepts, proposing a Temporal Consistency-Based Active Inference (TC-AIF) task offloading strategy optimization algorithm. By abstracting high-dimensional dynamic scenes and utilizing temporal-scale reasoning predictions, the algorithm captures more meaningful low-dimensional environmental information. A self-supervised temporal consistency method ensures accurate environmental change detection. Combining active inference with reinforcement learning, the optimization target is designed within the free energy theory framework. To enhance learning efficiency, we propose a free-energy-based experience replay mechanism, which alters the data sampling distribution. Experimental results demonstrate that TC-AIF achieves optimal task offloading and resource allocation strategies, mitigating the performance impact of exploration-exploitation and data efficiency issues.
针对当前多智能体多用户的MEC环境中的AIGC任务卸载问题,本文以音频语言模型的任务卸载为例,建立了一个以最大化用户服务质量为主要目标的多智能体多接入边缘计算系统模型。传统多智能体强化学习方法在面对多样化的网络环境与算力需求时往往表现出非平稳性和通信问题。为克服上述挑战,本文提出了一种基于信念编码通信的多智能体协作主动推理(Multi-Agent Active Inference,MA-AIF)算法。该算法将TC-AIF算法拓展至多智能体协作场景,每个智能体采用基于多层注意力机制的通信方案有选择性地关注其他智能体的信念编码,以获得更丰富的环境理解和更精准的状态估计。与此同时,本文还通过引入基于值分解的回报分配方案,借助混合Q值网络对多个智能体间的收益进行动态调整,从而在不同资源条件和通信环境下实现更具协同性的决策过程。实验结果表明,MA-AIF在多个多接入边缘计算场景中均表现出卓越的性能与稳定性。
按照学术论文风格翻译为英文,并精简部分内容
In the multi-agent multi-user MEC environment for AIGC task offloading, this paper uses the task offloading of audio language models as an example to develop a multi-agent multi-access edge computing system model aimed at maximizing user service quality. Traditional multi-agent reinforcement learning methods often exhibit instability and communication issues when facing diverse network environments and computational demands. To address these challenges, we propose a Multi-Agent Active Inference (MA-AIF) algorithm based on belief-encoded communication. The algorithm extends the TC-AIF algorithm to multi-agent collaborative scenarios, where each agent selectively focuses on other agents' belief encodings using a multi-layer attention-based communication scheme to gain richer environmental understanding and more accurate state estimation. Additionally, we introduce a value-decomposition-based reward allocation scheme, using a hybrid Q-value network to dynamically adjust rewards among agents, enabling more coordinated decision-making under varying resource and communication conditions. Experimental results show that MA-AIF exhibits excellent performance and stability across multiple multi-access edge computing scenarios.