Solution Explanation
We want to evaluate the expression
E=sin(250∘)1+cos(290∘)3.
1. Rewrite the angles in more familiar forms
-
sin(250∘)
Notice 250∘=180∘+70∘.
We use the identity sin(180∘+θ)=−sin(θ).
Hence,
sin(250∘)=sin(180∘+70∘)=−sin(70∘).
-
cos(290∘)
Notice 290∘=360∘−70∘.
We use the identity cos(360∘−θ)=cos(θ).
Hence,
cos(290∘)=cos(360∘−70∘)=cos(70∘).
Therefore, the expression becomes
E=−sin(70∘)1+cos(70∘)3=−sin(70∘)1+cos(70∘)3.
2. Convert sin(70∘) and cos(70∘)
Using the co-function identities:
sin(70∘)=cos(20∘),cos(70∘)=sin(20∘).
So we can also write
E=−cos(20∘)1+sin(20∘)3.
3. Combine into a single fraction
Let’s put everything under one denominator:
E=sin(20∘)cos(20∘)−sin(20∘)+3cos(20∘).
3.1 Simplify the numerator
Observe the numerator:
−sin(20∘)+3cos(20∘).
A useful identity is that for some R and α:
3cos(20∘)−sin(20∘)=Rcos(20∘+α).
By matching coefficients, one can show that R=2 and α=30∘, giving
3cos(20∘)−sin(20∘)=2cos(50∘).
Hence, the numerator is:
−sin(20∘)+3cos(20∘)=3cos(20∘)−sin(20∘)=2cos(50∘).
3.2 Simplify the denominator
The denominator is sin(20∘)cos(20∘). Recall the identity
sin(2θ)=2sin(θ)cos(θ).
So
sin(20∘)cos(20∘)=21sin(40∘).
4. Put it all together
Thus,
E=sin(20∘)cos(20∘)2cos(50∘)=21sin(40∘)2cos(50∘)=12cos(50∘)×sin(40∘)2=4sin(40∘)cos(50∘).
But notice cos(50∘)=sin(40∘) because cos(50∘)=sin(90∘−50∘)=sin(40∘).
Hence,
E=4×sin(40∘)sin(40∘)=4.
5. Final result
4.
Therefore,
sin(250∘)1+cos(290∘)3=4.