二次多項式解集分析
बनाया गया: 13 जनवरी 2025
बनाया गया: 13 जनवरी 2025
Mapping out the polynomials
I’m analyzing two real-coefficient quadratics, f(x) and g(x), with zeros at specific x values. I'll explore where their combined sum is greater than zero. This involves examining their signs.
Examining interval possibilities
I’m considering if f(x) + g(x) > 0 for x > 3 or x < 1, by setting a positive or negative value for a and b. This approach helps gauge feasible intervals.
Evaluating options
I’m examining a negaitve sign for a or b, finding that f(x) + g(x) = 2(x-2), which is positive for x > 2 and negative for x < 2.
Reevaluating intervals
Taking a closer look, I’m examining combinations of a and b to understand if the solution set shifts to intervals x > 3 or x < 1.
Laying out the options
I’m looking into intervals x > 3 or x < 1, aiming to understand if one quadratic can be > 0 outside [1,3] by examining the parabola's shape and roots.
Piecing together polynomial equations
I’m working through polynomial equations to see if x > 3 or x < 1 can fit roots at 1 and 3, factoring as c(x-1)(x-3).
Breaking down the solution
I’m trying to factor f(x) + g(x) as c(x-1)(x-3). However, a contradiction arises, indicating no solution for c > 0, and x > 3 or x < 1 is not feasible.
Adjusting parameters
I’m tweaking a and b to ensure the polynomial remains > 0. The aim is for a negative discriminant, confirming no real roots and constant positivity.
Calculating the discriminant
I’m testing various a and b combinations to assess if the polynomial remains always positive. By examining the discriminant, it appears as a perfect square with positive results.
Determining the discriminant
I expanded and simplified the discriminant, confirming it as (a-b)^2, implying non-negativity. This indicates the polynomial always has real roots, making it impossible for the polynomial to stay strictly > 0 for all x.
Confirming polynomial properties
I verified that setting a = b leads to a repeated root. This ensures the polynomial is non-negative for all x, with equality at the repeated root, making solution #2 impossible.
Evaluating combinations
I examined a = 1 and b = 1, leading to f(x) + g(x) = 2(x-2)^2, which is non-negative for all x and zero at x = 2. This suggests the solution #3 is viable.
Evaluating feasibility
Considering a = b < 0, the polynomial becomes non-positive. For x > 1.5 and x < 2, the sum can turn positive, potentially fitting solution #5.
Analyzing polynomial behavior
I’m examining a downward-opening parabola with roots at 1.5 and 2. This setup can produce a positive interval between the roots, suggesting potential solution #5.
Mapping polynomial factors
I’m working through polynomial factors to see if a negative constant can meet conditions for solution #5, ensuring positive results between specific limits.
Thought about quadratic functions and solutions 花的時間為 40 秒
解析思路:
設
其中 為實數常數。那麼
二次式 的判別式為
先將括號展開、整理:
因此
結論
這個二次式的判別式永遠是 ,因此它要嘛有兩個實根、要嘛是一對重根 (當 時)。
這也意味著,不可能 出現「對所有實數 都大於 0」(即整個拋物線完全在 -軸上方且無交點) 的情形。
題目列出的候選解集有:
我們要判斷:對某些 的選取,有沒有可能 使得 的解正好是這些集合之一。
若要對所有實數 都有 ,那代表整條拋物線「永遠在 -軸之上且無交點」。
然而上面判別式分析已知 ,所以二次式一定有實根(單、雙根都算)。
因此不可能「對所有 都嚴格大於 0」;選項 2 不可能。
如果希望 只有在 時等於 0、其他時候都 > 0,表示整個拋物線只有一個重根,而且開口向上。
讓我們嘗試最簡單情形:令 ,則
則
這個拋物線正好只在 時碰到 0,其他 值均為正。
因此其解集為 。
證實選項 3 可以實現。
「無解」表示 根本沒有任何解,也就是對所有 都「 0) 或至少「從不大於 0」。
要做到「整條拋物線永遠在 -軸之下或剛好壓在上面」,需要
我們已知 。若要 則 。
舉例:
先分別展開:
相加得到
整條拋物線開口向下,且最大值在 處為 0,其它地方更小,因此
「嚴格大於 0」的解不存在。
證實選項 4 可以實現。
要讓「解集是 或 」表示拋物線在區間 之間整段 < 0、而在外面 > 0。
換言之,該二次式若開口向上,則它的兩個交點應該是 與 ,使得外側呈現 > 0、內側 < 0。
我們想看看:能否令
若可以,就會得到解集 或 。
但是透過「把 與 比較係數」去解聯立方程,最終會發現無法同時滿足(會導致參數矛盾)。實際計算可見:
因此,選項 1 不可能 透過某對 來實現。
想要解集是「在 與 之間」才 > 0,代表
也就是
展開得
所以
並比較係數:(設 )
去解
只要能在 下找到實數 即可。實際運算確可解出一整組參數(不會矛盾)。例如選 ,就能求出 (或其他對應解),最後得到拋物線的根果然是 ,開口向下,區間 為正。
證實選項 5 可以實現。
答案:3、4、5。