GloGen BP Estimation
बनाया गया: 14 दिसंबर 2024
बनाया गया: 14 दिसंबर 2024
详细介绍这篇文章,完整详细Contents lists available at ScienceDirect
Computers in Biology and Medicine
journal homepage: www.elsevier.com/locate/compbiomed
GloGen: PPG prompts for few-shot transfer learning in blood pressure
estimation
Taero Kim a
, Hyeonjeong Lee c
, Minseong Kim c
, Kwang-Yong Kim c
, Kyu Hyung Kim c
,
Kyungwoo Song a,b,∗
a Department of Statistics and Data Science, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
b Department of Applied Statistics, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
c Daegu-Gyeongbuk Research Division, Electronics and Telecommunications Research Institute (ETRI), 1, Techno sunhwan-ro 10-gil, Yuga-eup,
Dalseong-gun, 42994, Daegu, Republic of Korea
A R T I C L E I N F O
MSC:
41A05
41A10
65D05
65D17
Keywords:
Photoplethysmogram signal
Prompt learning
Few-shot learning
Transfer learning
Blood pressure estimation
A B S T R A C T
With the rapid advancements in machine learning, its applications in the medical field have garnered increasing
interest, particularly in non-invasive health monitoring methods. Blood pressure (BP) estimation using
Photoplethysmogram (PPG) signals presents a promising opportunity for real-time, continuous monitoring.
However, existing models often struggle with generalization, especially for high-risk groups like hypotension
and hypertension, where precise predictions are crucial. In this study, we propose Global Prompt and Prompt
Generator (GloGen), a robust few-shot transfer learning framework designed to improve BP estimation using
PPG signals. GloGen employs a dual-prompt learning approach, combining Global Prompt (GP) for capturing
shared features across signals and an Instance-wise Prompt (IP) for generating personalized prompts for each
signal. To enhance model robustness, we also introduce Variance Penalty (VP) that ensures diversity among
the generated prompts. Experimental results on benchmark datasets demonstrate that GloGen significantly
outperforms conventional methods, both in terms of accuracy and robustness, particularly in underrepresented
BP groups, even in scenarios with limited training data. GloGen thus stands out as an efficient solution for
real-time, non-invasive BP estimation, with great potential for use in healthcare settings where data is scarce
and diverse populations need to be accurately monitored.
4 41.5 ± 2.1 25.2 ± 4.3 26.6 ± 5.5 35.4 ± 4.7
5 35.2 ± 4.4 19.3 ± 5.2 28.7 ± 10.2 7.4 ± 6.3
8 99.6 ± 2.3 82.9 ± 2.0 97.4 ± 0.8 77.8 ± 15.3
subjects [34]. Table 5 shows the results. Except for the average DBP
MAE in the 10-shot setting, GloGen outperforms the baseline across
all other metrics. Notably, it significantly improves Group Average
performance, indicating that GloGen remains effective even for largescale pre-trained models and successfully learns a robust model for
blood pressure group changes.
4.7. Classification
GloGen excels not only in regression tasks for SBP and DBP but
also in classification tasks that directly predict BP groups. To assess
GloGen’s effectiveness across various metrics, we include average accuracy, group accuracy (the average of accuracy in each group), precision,
recall, and F1-score in Table 6. We evaluate BP classification performance on the BCG dataset in the few-shot setting using a model
pre-trained on the Sensors dataset. GloGen achieves the best performance in all metrics except for average accuracy in the 10-shot setting,
demonstrating that the transformation of PPG signals with GloGen is
versatile and applicable to different tasks.
4.8. Analysis of failure cases
We observe that the number of peaks in PPG signals significantly
impacts model performance. Fig. 5 illustrates a portion of the BCG data,
while Table 7 presents the MAE values calculated when the model,
pre-trained on the UCI dataset and fine-tuned with the 5-shot BCG
dataset, estimates the data shown in Fig. 5. Except for the Fine-tuned
(FT) model, the other models demonstrate the best performance on the
input PPG signal in Fig. 5 with 5 peaks. Fig. 5(c) depicts data with 8
peaks, where all baselines, including GloGen, exhibit very high MAE
values.
4.9. Discussion
Numerous studies have proposed novel model architectures to predict SBP and DBP solely from PPG signals [4,9,22,23,36]. [13] compares the average MAE results of three representative architectures –
ResNet1D [23], MLPBP [22], and SpectroResNet [4] – across various
Computers in Biology and Medicine 183 (2024) 109216
7
T. Kim et al.
Fig. 5. PPG signals from the BCG dataset categorized by the number of peaks.
datasets. Among these, ResNet1D is selected as the pre-trained model
in our study due to its overall superior performance. However, as
illustrated in Tables 1 and 5, the prediction model lacks robustness
in our setting where the pre-trained dataset and the target dataset
differ. Traditional transfer learning methods, such as FT and LP, could
be employed to address this issue, but their robustness is inconsistent
depending on the combination of the pre-trained and target distributions (Fig. 2). GloGen, on the other hand, consistently demonstrates
superior performance and robustness, irrespective of the distributional
or dataset size differences between the train and target datasets.
The primary objective of transfer learning is to ensure that knowledge obtained during pre-training can be effectively applied to target
datasets with different distributions. While recent BP estimation studies
using PPG signals have explored transfer learning, most have presented
limited results by confining the transfer learning to the same dataset.
For instance, [8,9] separate pre-train and target datasets by patient
ID within the MIMIC-III dataset, requiring additional demographic
information, which restricts the applicability of the framework to specific datasets. Similarly, [37] proposes a transfer learning framework
confined within the MIMIC-II dataset. [38] introduces a contrastive
learning-based pre-training framework using large-scale datasets, pairing high-quality and low-quality PPG signals. While this framework
presents results for downstream tasks with target datasets substantially
different from the pre-trained dataset, it relies on large-scale data for
pre-training and lacks quantitative evaluations of model robustness
across different BP ranges. While previous studies have focused on full
fine-tuning for the target dataset, our experimental results in the fewshot setting, however, show that GloGen significantly enhances model
robustness with only a small number of samples in target distribution.
Additionally, the prompt-based approach, which is not constrained by
specific model architectures, further highlights the potential impacts of
our studies.
5. Conclusion
In this paper, we propose GloGen, a novel framework for few-shot
transfer learning on BP estimation using PPG signal. We explicitly
present the performance differences across BP groups for representative
transfer learning methods and demonstrate the effectiveness of prompt
learning using GloGen. Thorough GP for the shared features and IP for
the instance-specific features, GloGen successfully manages the tradeoff between BP estimation performance on the target distribution and
robustness across different BP groups. We also introduce VP to encourage Prompt Generator to generate diverse IPs. As a result, Prompt
Generator effectively extracts BP group information corresponding to
each PPG signal and IP facilitates robust BP estimation by transforming
the PPG signals. GloGen is not only applicable to PPG signals but can
also be extended to all other signal data, which we aim to explore in
future work.
CRediT authorship contribution statement
Taero Kim: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, Formal analysis, Conceptualization. Hyeonjeong Lee: Writing – review & editing, Project
administration, Methodology, Investigation. Minseong Kim: Writing –
review & editing, Visualization, Software. Kwang-Yong Kim: Writing –
review & editing, Funding acquisition, Conceptualization. Kyu Hyung
Kim: Writing – review & editing, Funding acquisition, Conceptualization. Kyungwoo Song: Writing – review & editing, Writing – original draft, Project administration, Investigation, Funding acquisition,
Conceptualization.
Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.
Acknowledgments
This work was supported by Electronics and Telecommunications
Research Institute (ETRI) grant funded by the Korean government.
[24ZD1140, Regional Industry ICT Convergence Technology Advancement and Support Project in Daegu-GyeongBuk (Medical)], and supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (RS-2024-00457216), and the
grant (22183MFDS431) from Ministry of Food and Drug Safety in 2024,
and the Industrial Technology Alchemist Project Program (No. RS-
2024-00419010) funded By the Ministry of Trade, Industry & Energy
(MOTIE, Korea).
References
[1] X. Teng, Y. Zhang, Continuous and noninvasive estimation of arterial blood
pressure using a photoplethysmographic approach, in: Proceedings of the 25th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (IEEE Cat. No. 03CH37439), Vol. 4, IEEE, 2003, pp. 3153–3156.
[2] W. Shi, C. Zhou, Y. Zhang, K. Li, X. Ren, H. Liu, X. Ye, Hybrid modeling on reconstitution of continuous arterial blood pressure using finger
photoplethysmography, Biomed. Signal Process. Control 85 (2023) 104972.
[3] H. Samimi, H.R. Dajani, A PPG-based calibration-free cuffless blood pressure
estimation method using cardiovascular dynamics, Sensors 23 (8) (2023) 4145.
[4] G. Slapničar, N. Mlakar, M. Luštrek, Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network, Sensors 19 (15)
(2019) 3420.
[5] M. Kim, H. Lee, K.-Y. Kim, K.-H. Kim, Deep learning model for blood pressure estimation from PPG signal, in: 2022 IEEE International Conference on
Metrology for Extended Reality, Artificial Intelligence and Neural Engineering
(MetroXRAINE), IEEE, 2022, pp. 1–5.
[6] A. Tazarv, M. Levorato, A deep learning approach to predict blood pressure
from ppg signals, in: 2021 43rd Annual International Conference of the IEEE
Engineering in Medicine & Biology Society, EMBC, IEEE, 2021, pp. 5658–5662.
Computers in Biology and Medicine 183 (2024) 109216
8
T. Kim et al.
[7] G. Frederick, et al., PPG signals for hypertension diagnosis: A novel method using
deep learning models, 2023, arXiv preprint arXiv:2304.06952.
[8] Y. Zhang, X. Ren, X. Liang, X. Ye, C. Zhou, A refined blood pressure estimation
model based on single channel photoplethysmography, IEEE J. Biomed. Health
Inf. 26 (12) (2022) 5907–5917.
[9] Z. Liu, Y. Zhang, C. Zhou, Bigru-attention for continuous blood pressure trends
estimation through single channel PPG, Comput. Biol. Med. 168 (2024) 107795.
[10] C.-T. Yen, S.-N. Chang, C.-H. Liao, Deep learning algorithm evaluation of hypertension classification in less photoplethysmography signals conditions, Meas.
Control 54 (3–4) (2021) 439–445.
[11] E.-S.A. El-Dahshan, M.M. Bassiouni, S.K. Khare, R.-S. Tan, U.R. Acharya, ExHyptNet: An explainable diagnosis of hypertension using EfficientNet with PPG
signals, Expert Syst. Appl. (2023) 122388.
[12] E. Martinez-Ríos, L. Montesinos, M. Alfaro-Ponce, A machine learning approach
for hypertension detection based on photoplethysmography and clinical data,
Comput. Biol. Med. 145 (2022) 105479.
[13] S. González, W.-T. Hsieh, T.P.-C. Chen, A benchmark for machine-learning based
non-invasive blood pressure estimation using photoplethysmogram, Sci. Data 10
(1) (2023) 149.
[14] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32.
[15] S. Maqsood, S. Xu, M. Springer, R. Mohawesh, A benchmark study of machine learning for analysis of signal feature extraction techniques for blood
pressure estimation using photoplethysmography (PPG), Ieee Access 9 (2021)
138817–138833.
[16] K. Duan, Z. Qian, M. Atef, G. Wang, A feature exploration methodology for learning based cuffless blood pressure measurement using photoplethysmography, in:
2016 38th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, EMBC, IEEE, 2016, pp. 6385–6388.
[17] G. Wang, M. Atef, Y. Lian, Towards a continuous non-invasive cuffless blood
pressure monitoring system using PPG: Systems and circuits review, IEEE Circuits
Syst. Magaz. 18 (3) (2018) 6–26.
[18] T. Treebupachatsakul, A. Boosamalee, S. Shinnakerdchoke, S. Pechprasarn, N.
Thongpance, Cuff-less blood pressure prediction from ecg and ppg signals using
Fourier transformation and amplitude randomization preprocessing for context
aggregation network training, Biosensors 12 (3) (2022) 159.
[19] Y. Yoon, J.H. Cho, G. Yoon, Non-constrained blood pressure monitoring using
ECG and PPG for personal healthcare, J. Med. Syst. 33 (2009) 261–266.
[20] B.L. Hill, N. Rakocz, Á. Rudas, J.N. Chiang, S. Wang, I. Hofer, M. Cannesson,
E. Halperin, Imputation of the continuous arterial line blood pressure waveform
from non-invasive measurements using deep learning, Sci. Rep. 11 (1) (2021)
15755.
[21] N. Ibtehaz, S. Mahmud, M.E. Chowdhury, A. Khandakar, M. Salman Khan, M.A.
Ayari, A.M. Tahir, M.S. Rahman, PPG2ABP: Translating photoplethysmogram
(PPG) signals to arterial blood pressure (ABP) waveforms, Bioengineering 9 (11)
(2022) 692.
[22] B. Huang, W. Chen, C.-L. Lin, C.-F. Juang, J. Wang, MLP-BP: A novel framework
for cuffless blood pressure measurement with PPG and ECG signals based on
MLP-mixer neural networks, Biomed. Signal Process. Control 73 (2022) 103404.
[23] F. Schrumpf, P. Frenzel, C. Aust, G. Osterhoff, M. Fuchs, Assessment of noninvasive blood pressure prediction from ppg and rppg signals using deep learning,
Sensors 21 (18) (2021) 6022.
[24] B. Lester, R. Al-Rfou, N. Constant, The power of scale for parameter-efficient
prompt tuning, 2021, arXiv preprint arXiv:2104.08691.
[25] X.L. Li, P. Liang, Prefix-tuning: Optimizing continuous prompts for generation,
2021, arXiv preprint arXiv:2101.00190.
[26] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, G. Neubig, Pre-train, prompt,
and predict: A systematic survey of prompting methods in natural language
processing, ACM Comput. Surv. 55 (9) (2023) 1–35.
[27] X. Liu, K. Ji, Y. Fu, W.L. Tam, Z. Du, Z. Yang, J. Tang, P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally across scales and tasks, 2021,
arXiv preprint arXiv:2110.07602.
[28] M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan, S.-N. Lim,
Visual prompt tuning, in: European Conference on Computer Vision, Springer,
2022, pp. 709–727.
[29] C. Oh, H. Hwang, H.-y. Lee, Y. Lim, G. Jung, J. Jung, H. Choi, K. Song, Blackvip:
Black-box visual prompting for robust transfer learning, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp.
24224–24235.
[30] H. Bahng, A. Jahanian, S. Sankaranarayanan, P. Isola, Exploring visual prompts
for adapting large-scale models, 2022, arXiv preprint arXiv:2203.17274.
[31] K. Zhou, J. Yang, C.C. Loy, Z. Liu, Conditional prompt learning for visionlanguage models, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 16816–16825.
[32] K. Zhou, J. Yang, C.C. Loy, Z. Liu, Learning to prompt for vision-language
models, Int. J. Comput. Vis. 130 (9) (2022) 2337–2348.
[33] H. Xue, F.D. Salim, Promptcast: A new prompt-based learning paradigm for time
series forecasting, IEEE Trans. Knowl. Data Eng. (2023).
[34] W. Wang, P. Mohseni, K.L. Kilgore, L. Najafizadeh, PulseDB: A large, cleaned
dataset based on MIMIC-III and VitalDB for benchmarking cuff-less blood
pressure estimation methods, Front. Digit. Health 4 (2023) 1090854.
[35] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.
[36] D. Dai, Z. Ji, H. Wang, Non-invasive continuous blood pressure estimation from
single-channel PPG based on a temporal convolutional network integrated with
an attention mechanism, Appl. Sci. 14 (14) (2024) 6061.
[37] H.M. Koparır, Ö. Arslan, Cuffless blood pressure estimation from photoplethysmography using deep convolutional neural network and transfer learning,
Biomed. Signal Process. Control 93 (2024) 106194.
[38] C. Ding, Z. Guo, Z. Chen, R.J. Lee, C. Rudin, X. Hu, SiamQuality: a ConvNetbased foundation model for photoplethysmography signals, Physiol. Meas. 45 (8)
(2024) 085004.
Computers in Biology and Medicine 183 (2024) 109216
9
下面将对该论文进行较为全面和详细的介绍和总结,包括研究背景、问题动机、方法创新点、实验设置、结果分析和意义展望等方面。
论文题目:GloGen: PPG prompts for few-shot transfer learning in blood pressure estimation
作者和单位:
期刊信息:Computers in Biology and Medicine
血压(Blood Pressure, BP)监测是心血管健康管理的关键指标。传统的血压测量依赖袖带或有创动脉测压(Arterial Blood Pressure, ABP)方法,这些方法在实时、连续和无创监测方面存在诸多不便。而光电容积描记图(Photoplethysmogram, PPG)是一种可通过简单传感器非侵入性获取的生理信号,已被证实与ABP存在一定相关性,因此利用PPG来预测血压有望实现便捷、实时的无创连续监测。
近年来,随着深度学习的发展,不少研究已尝试利用PPG信号直接预测收缩压(SBP)和舒张压(DBP)。然而,即使在应用深度学习的前提下,模型在应对跨数据集或不同人群(如低血压和高血压高风险人群)时的泛化和鲁棒性仍然存在较大挑战。同时,为了进一步提高模型的实用性和适应性,迁移学习(transfer learning)成为焦点:在拥有大量数据和较高性能的预训练模型的基础上,将其能力迁移到新的、数据量有限的目标任务中。然而,在医疗数据领域中,目标任务的数据常常稀少(few-shot场景),这使得普通的迁移学习策略效用受限。
为了解决上述问题,本文提出了一种名为GloGen (Global Prompt and Prompt Generator)的新颖框架,旨在在极少数据(few-shot)条件下通过prompt式迁移学习手段,将预训练模型对PPG信号的知识高效传递给目标任务,从而提高血压估计的准确性和对高低血压等不同亚群体的鲁棒性。
泛化能力不足:现有基于PPG的BP预测模型在面对与训练数据分布有较大差异的目标数据集时,性能明显下降,尤其对于血压过高或过低的高风险人群,精确预测尤为重要,但往往达不到理想的效果。
数据稀缺性:在医疗领域获得大量标注数据较为困难,许多场景中仅有极少的标注样本,使得传统深度模型或迁移学习方法难以有效泛化。
平衡整体性能与组间鲁棒性:模型在平均意义上的预测性能固然重要,但对于不同BP分组(如低血压、正常血压、前高血压、高血压人群)的预测一致性和稳定性同样关键。高风险组的预测不准确将导致更大的临床风险,因此实现对不同血压亚群的稳定预测成为一项重要任务。
GloGen的核心理念在于:使用prompt learning的思想来改造输入的PPG信号,使预训练模型更好地适应目标任务的分布和特性,从而在few-shot的场景下也能获得良好的表现。
Global Prompt (GP):
GP是一组可训练参数,与任意输入PPG信号线性叠加(加法)从而得到改造后的输入。GP在所有样本上共享,用于捕捉目标数据集的全局特征或公共模式,从而帮助模型更好适配总体分布。
Instance-wise Prompt (IP) & Prompt Generator:
与GP不同,IP会为每个输入样本动态生成特定的“提示”。即通过将输入数据映射到一个特征嵌入空间后,使用Prompt Generator(一个含反卷积、归一化与激活层的解码结构)为每个输入实例生成独特的IP。IP可视为针对单个样本的精细调整,通过强调或抑制特定模式,使模型在个体层面适应目标分布。
此外,引入触发向量(trigger vector)可为Prompt Generator补充额外的可训练信息,从而在少数据条件下仍能改善prompt生成的质量。
多重正则化与归一化策略:
为防止prompt值过大干扰原始PPG特征,论文对生成的prompts进行归一化和剪裁,使其范围与原始PPG信号分布相匹配,从而保持训练稳定性。
Variance Penalty (VP):
为了增强模型在不同BP子群体(血压分组)下的鲁棒性,论文设计了VP正则项,以鼓励在不同血压分组间生成的IP具备多样性。通过在损失函数中引入VP,模型会倾向于为不同的BP分组生成更有辨识度的prompt,这有助于提高高风险组数据的预测精度,改善全局鲁棒性。
数据集与实验场景:
实验使用文献中已建立的三类基准数据集(BCG、Sensors和UCI),同时也从MIMIC和VitalDB等大规模数据集中评估方法在迁移学习中的适用性。作者将BP值按范围分为低血压(Hypo)、正常血压(Normal)、前高血压(Prehyper)和高血压(Hyper2)四组,以衡量模型在不同血压区间的性能。
实验采用few-shot设定,如每个BP组仅有5或10个训练样本。同时通过对比多种迁移策略(从零训练、仅微调最后一层、完整细粒度微调以及本文的GloGen)来评价方法有效性。
评价指标:
关键实验结果:
消融实验与附加分析:
论文还讨论了不使用GP或IP、不同的正则化策略等设置对性能的影响。结果显示,没有其中任一模块(如GP、IP、VP)都会导致性能下降,表明各组件在GloGen框架中都起着关键作用。
此外论文探讨了PPG信号自身特性(如波峰数目)等对模型性能的影响。
新颖的Prompt Learning框架:
将Prompt Learning概念从自然语言处理扩展到PPG时间序列信号处理中,利用GloGen prompts作为高维数据的可训练“输入增强”,为该领域的迁移学习提供了一种新思路。
提升few-shot场景下的迁移能力:
在医疗领域获取大规模目标数据非常困难。GloGen在仅有极少数据时仍能有效提升模型的准确性和鲁棒性,显示了在实际医疗场景中部署BP预测系统的巨大潜力。
改善高风险人群预测精度:
通过鼓励prompt的多样性和差异化,GloGen对原本难以准确预测的低血压和高血压组群体表现出了显著改进。
通用性与可扩展性:
GloGen不限制具体的模型结构或数据类型,原则上可扩展到其他生理信号或时间序列预测问题中。
未来工作可能包括:
总结:
总体而言,本文提出的GloGen框架通过引入Global Prompt与Instance-wise Prompt的双Prompt策略、并结合Variance Penalty正则提升了迁移学习在PPG血压预测中的适应性与鲁棒性。实验结果显示,在仅有极少数样本的数据集上,GloGen仍能在整体预测精度与分组鲁棒性方面显著超越传统方法,为在真实医疗场景中实现高效、精准、可推广的无创血压估计提供了具有参考价值的新途径。
这篇论文是大模型吗,详细说明,看不懂。结合文章的内容,详细介绍
这篇论文并不是在讨论“大模型”(Large Language Model)或者类似 ChatGPT 这样的超大规模预训练语言模型。相反,它是一篇关于生理信号处理和迁移学习方法的研究论文。该论文关注的是利用已有预训练模型(在大量数据上训练好的模型)来帮助解决血压(Blood Pressure, BP)估计的下游任务,尤其是当我们只有极少数目标数据(few-shot场景)时,如何通过一种叫做“Prompt Learning”的策略来提高模型的泛化能力和对不同血压人群(如低血压、高血压)的鲁棒性。
下面将以通俗和详细的方式介绍论文的核心思路和方法。
血压监测的重要性:连续、无创地监测血压对于心血管健康管理很重要。传统血压测量要用袖带或者有创测量血管压力,比较繁琐和不方便。因此,科学家们希望利用简单且非侵入性可采集的生理信号(如光电容积描记图PPG信号)来预测血压。这意味着只要戴一个小型传感器,就能在日常生活中连续监测血压,对健康管理有很大意义。
已有挑战:
迁移学习的需求: 有了一个已经在大数据集上训练好的模型,我们希望将其知识迁移到一个数据规模很小、分布又不同的目标数据集上。这是迁移学习的目的。传统迁移学习方法(微调整个模型或只微调最后一层)在few-shot场景中往往效果不足够理想。
这篇论文提出了一种名为 GloGen 的新方法。这个方法不是“大模型”,而是对输入信号进行一种“提示式”(prompt-based)的改造,让已经训练好的模型更好地适应新数据。
在自然语言处理(NLP)中,Prompt Learning是指不直接修改已训练好的大模型参数,而是通过加入一些额外的、可训练的提示(prompts)来让模型在新任务上表现更好。这类似于给模型输入做一些巧妙的“引导”,使得模型在面对新任务时更容易适应。
虽然该思想最初来自NLP的大型预训练语言模型,但这篇论文将Prompt Learning的理念移植到生理信号处理领域,用于PPG信号的血压估计。
Global Prompt (GP):
Instance-wise Prompt (IP) & Prompt Generator:
Variance Penalty (VP):
作者在三个基准数据集(BCG、Sensors、UCI)和一个超大数据集(MIMIC)上进行实验,采用few-shot设定(如每个血压分组只有5或10条训练样本)。实验结果表明:
如果将其与“大模型”类比,区别在于这里没有引入数百亿参数的巨型预训练模型,也不涉及自然语言处理的大规模语言模型。本文使用的模型结构(如ResNet1D)是常规规模的深度模型,所提出的贡献在于一种新颖的“提示生成与添加”策略,而非构建巨型模型本身。
总结来说,这是一篇关于利用Prompt Learning理念对生理信号(PPG)进行特定输入改造,从而提高血压预测迁移学习能力的论文,而不是讨论现代意义上“大语言模型”的研究。
好的,结合latex公式,详细说明文章的思路。举一个具体的例子,详细说明论文的思路Contents lists available at ScienceDirect
Computers in Biology and Medicine
journal homepage: www.elsevier.com/locate/compbiomed
GloGen: PPG prompts for few-shot transfer learning in blood pressure
estimation
Taero Kim a
, Hyeonjeong Lee c
, Minseong Kim c
, Kwang-Yong Kim c
, Kyu Hyung Kim c
,
Kyungwoo Song a,b,∗
a Department of Statistics and Data Science, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
b Department of Applied Statistics, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
c Daegu-Gyeongbuk Research Division, Electronics and Telecommunications Research Institute (ETRI), 1, Techno sunhwan-ro 10-gil, Yuga-eup,
Dalseong-gun, 42994, Daegu, Republic of Korea
A R T I C L E I N F O
MSC:
41A05
41A10
65D05
65D17
Keywords:
Photoplethysmogram signal
Prompt learning
Few-shot learning
Transfer learning
Blood pressure estimation
A B S T R A C T
With the rapid advancements in machine learning, its applications in the medical field have garnered increasing
interest, particularly in non-invasive health monitoring methods. Blood pressure (BP) estimation using
Photoplethysmogram (PPG) signals presents a promising opportunity for real-time, continuous monitoring.
However, existing models often struggle with generalization, especially for high-risk groups like hypotension
and hypertension, where precise predictions are crucial. In this study, we propose Global Prompt and Prompt
Generator (GloGen), a robust few-shot transfer learning framework designed to improve BP estimation using
PPG signals. GloGen employs a dual-prompt learning approach, combining Global Prompt (GP) for capturing
shared features across signals and an Instance-wise Prompt (IP) for generating personalized prompts for each
signal. To enhance model robustness, we also introduce Variance Penalty (VP) that ensures diversity among
the generated prompts. Experimental results on benchmark datasets demonstrate that GloGen significantly
outperforms conventional methods, both in terms of accuracy and robustness, particularly in underrepresented
BP groups, even in scenarios with limited training data. GloGen thus stands out as an efficient solution for
real-time, non-invasive BP estimation, with great potential for use in healthcare settings where data is scarce
and diverse populations need to be accurately monitored.
4 41.5 ± 2.1 25.2 ± 4.3 26.6 ± 5.5 35.4 ± 4.7
5 35.2 ± 4.4 19.3 ± 5.2 28.7 ± 10.2 7.4 ± 6.3
8 99.6 ± 2.3 82.9 ± 2.0 97.4 ± 0.8 77.8 ± 15.3
subjects [34]. Table 5 shows the results. Except for the average DBP
MAE in the 10-shot setting, GloGen outperforms the baseline across
all other metrics. Notably, it significantly improves Group Average
performance, indicating that GloGen remains effective even for largescale pre-trained models and successfully learns a robust model for
blood pressure group changes.
4.7. Classification
GloGen excels not only in regression tasks for SBP and DBP but
also in classification tasks that directly predict BP groups. To assess
GloGen’s effectiveness across various metrics, we include average accuracy, group accuracy (the average of accuracy in each group), precision,
recall, and F1-score in Table 6. We evaluate BP classification performance on the BCG dataset in the few-shot setting using a model
pre-trained on the Sensors dataset. GloGen achieves the best performance in all metrics except for average accuracy in the 10-shot setting,
demonstrating that the transformation of PPG signals with GloGen is
versatile and applicable to different tasks.
4.8. Analysis of failure cases
We observe that the number of peaks in PPG signals significantly
impacts model performance. Fig. 5 illustrates a portion of the BCG data,
while Table 7 presents the MAE values calculated when the model,
pre-trained on the UCI dataset and fine-tuned with the 5-shot BCG
dataset, estimates the data shown in Fig. 5. Except for the Fine-tuned
(FT) model, the other models demonstrate the best performance on the
input PPG signal in Fig. 5 with 5 peaks. Fig. 5(c) depicts data with 8
peaks, where all baselines, including GloGen, exhibit very high MAE
values.
4.9. Discussion
Numerous studies have proposed novel model architectures to predict SBP and DBP solely from PPG signals [4,9,22,23,36]. [13] compares the average MAE results of three representative architectures –
ResNet1D [23], MLPBP [22], and SpectroResNet [4] – across various
Computers in Biology and Medicine 183 (2024) 109216
7
T. Kim et al.
Fig. 5. PPG signals from the BCG dataset categorized by the number of peaks.
datasets. Among these, ResNet1D is selected as the pre-trained model
in our study due to its overall superior performance. However, as
illustrated in Tables 1 and 5, the prediction model lacks robustness
in our setting where the pre-trained dataset and the target dataset
differ. Traditional transfer learning methods, such as FT and LP, could
be employed to address this issue, but their robustness is inconsistent
depending on the combination of the pre-trained and target distributions (Fig. 2). GloGen, on the other hand, consistently demonstrates
superior performance and robustness, irrespective of the distributional
or dataset size differences between the train and target datasets.
The primary objective of transfer learning is to ensure that knowledge obtained during pre-training can be effectively applied to target
datasets with different distributions. While recent BP estimation studies
using PPG signals have explored transfer learning, most have presented
limited results by confining the transfer learning to the same dataset.
For instance, [8,9] separate pre-train and target datasets by patient
ID within the MIMIC-III dataset, requiring additional demographic
information, which restricts the applicability of the framework to specific datasets. Similarly, [37] proposes a transfer learning framework
confined within the MIMIC-II dataset. [38] introduces a contrastive
learning-based pre-training framework using large-scale datasets, pairing high-quality and low-quality PPG signals. While this framework
presents results for downstream tasks with target datasets substantially
different from the pre-trained dataset, it relies on large-scale data for
pre-training and lacks quantitative evaluations of model robustness
across different BP ranges. While previous studies have focused on full
fine-tuning for the target dataset, our experimental results in the fewshot setting, however, show that GloGen significantly enhances model
robustness with only a small number of samples in target distribution.
Additionally, the prompt-based approach, which is not constrained by
specific model architectures, further highlights the potential impacts of
our studies.
5. Conclusion
In this paper, we propose GloGen, a novel framework for few-shot
transfer learning on BP estimation using PPG signal. We explicitly
present the performance differences across BP groups for representative
transfer learning methods and demonstrate the effectiveness of prompt
learning using GloGen. Thorough GP for the shared features and IP for
the instance-specific features, GloGen successfully manages the tradeoff between BP estimation performance on the target distribution and
robustness across different BP groups. We also introduce VP to encourage Prompt Generator to generate diverse IPs. As a result, Prompt
Generator effectively extracts BP group information corresponding to
each PPG signal and IP facilitates robust BP estimation by transforming
the PPG signals. GloGen is not only applicable to PPG signals but can
also be extended to all other signal data, which we aim to explore in
future work.
CRediT authorship contribution statement
Taero Kim: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, Formal analysis, Conceptualization. Hyeonjeong Lee: Writing – review & editing, Project
administration, Methodology, Investigation. Minseong Kim: Writing –
review & editing, Visualization, Software. Kwang-Yong Kim: Writing –
review & editing, Funding acquisition, Conceptualization. Kyu Hyung
Kim: Writing – review & editing, Funding acquisition, Conceptualization. Kyungwoo Song: Writing – review & editing, Writing – original draft, Project administration, Investigation, Funding acquisition,
Conceptualization.
Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.
Acknowledgments
This work was supported by Electronics and Telecommunications
Research Institute (ETRI) grant funded by the Korean government.
[24ZD1140, Regional Industry ICT Convergence Technology Advancement and Support Project in Daegu-GyeongBuk (Medical)], and supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (RS-2024-00457216), and the
grant (22183MFDS431) from Ministry of Food and Drug Safety in 2024,
and the Industrial Technology Alchemist Project Program (No. RS-
2024-00419010) funded By the Ministry of Trade, Industry & Energy
(MOTIE, Korea).
References
[1] X. Teng, Y. Zhang, Continuous and noninvasive estimation of arterial blood
pressure using a photoplethysmographic approach, in: Proceedings of the 25th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (IEEE Cat. No. 03CH37439), Vol. 4, IEEE, 2003, pp. 3153–3156.
[2] W. Shi, C. Zhou, Y. Zhang, K. Li, X. Ren, H. Liu, X. Ye, Hybrid modeling on reconstitution of continuous arterial blood pressure using finger
photoplethysmography, Biomed. Signal Process. Control 85 (2023) 104972.
[3] H. Samimi, H.R. Dajani, A PPG-based calibration-free cuffless blood pressure
estimation method using cardiovascular dynamics, Sensors 23 (8) (2023) 4145.
[4] G. Slapničar, N. Mlakar, M. Luštrek, Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network, Sensors 19 (15)
(2019) 3420.
[5] M. Kim, H. Lee, K.-Y. Kim, K.-H. Kim, Deep learning model for blood pressure estimation from PPG signal, in: 2022 IEEE International Conference on
Metrology for Extended Reality, Artificial Intelligence and Neural Engineering
(MetroXRAINE), IEEE, 2022, pp. 1–5.
[6] A. Tazarv, M. Levorato, A deep learning approach to predict blood pressure
from ppg signals, in: 2021 43rd Annual International Conference of the IEEE
Engineering in Medicine & Biology Society, EMBC, IEEE, 2021, pp. 5658–5662.
Computers in Biology and Medicine 183 (2024) 109216
8
T. Kim et al.
[7] G. Frederick, et al., PPG signals for hypertension diagnosis: A novel method using
deep learning models, 2023, arXiv preprint arXiv:2304.06952.
[8] Y. Zhang, X. Ren, X. Liang, X. Ye, C. Zhou, A refined blood pressure estimation
model based on single channel photoplethysmography, IEEE J. Biomed. Health
Inf. 26 (12) (2022) 5907–5917.
[9] Z. Liu, Y. Zhang, C. Zhou, Bigru-attention for continuous blood pressure trends
estimation through single channel PPG, Comput. Biol. Med. 168 (2024) 107795.
[10] C.-T. Yen, S.-N. Chang, C.-H. Liao, Deep learning algorithm evaluation of hypertension classification in less photoplethysmography signals conditions, Meas.
Control 54 (3–4) (2021) 439–445.
[11] E.-S.A. El-Dahshan, M.M. Bassiouni, S.K. Khare, R.-S. Tan, U.R. Acharya, ExHyptNet: An explainable diagnosis of hypertension using EfficientNet with PPG
signals, Expert Syst. Appl. (2023) 122388.
[12] E. Martinez-Ríos, L. Montesinos, M. Alfaro-Ponce, A machine learning approach
for hypertension detection based on photoplethysmography and clinical data,
Comput. Biol. Med. 145 (2022) 105479.
[13] S. González, W.-T. Hsieh, T.P.-C. Chen, A benchmark for machine-learning based
non-invasive blood pressure estimation using photoplethysmogram, Sci. Data 10
(1) (2023) 149.
[14] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32.
[15] S. Maqsood, S. Xu, M. Springer, R. Mohawesh, A benchmark study of machine learning for analysis of signal feature extraction techniques for blood
pressure estimation using photoplethysmography (PPG), Ieee Access 9 (2021)
138817–138833.
[16] K. Duan, Z. Qian, M. Atef, G. Wang, A feature exploration methodology for learning based cuffless blood pressure measurement using photoplethysmography, in:
2016 38th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, EMBC, IEEE, 2016, pp. 6385–6388.
[17] G. Wang, M. Atef, Y. Lian, Towards a continuous non-invasive cuffless blood
pressure monitoring system using PPG: Systems and circuits review, IEEE Circuits
Syst. Magaz. 18 (3) (2018) 6–26.
[18] T. Treebupachatsakul, A. Boosamalee, S. Shinnakerdchoke, S. Pechprasarn, N.
Thongpance, Cuff-less blood pressure prediction from ecg and ppg signals using
Fourier transformation and amplitude randomization preprocessing for context
aggregation network training, Biosensors 12 (3) (2022) 159.
[19] Y. Yoon, J.H. Cho, G. Yoon, Non-constrained blood pressure monitoring using
ECG and PPG for personal healthcare, J. Med. Syst. 33 (2009) 261–266.
[20] B.L. Hill, N. Rakocz, Á. Rudas, J.N. Chiang, S. Wang, I. Hofer, M. Cannesson,
E. Halperin, Imputation of the continuous arterial line blood pressure waveform
from non-invasive measurements using deep learning, Sci. Rep. 11 (1) (2021)
15755.
[21] N. Ibtehaz, S. Mahmud, M.E. Chowdhury, A. Khandakar, M. Salman Khan, M.A.
Ayari, A.M. Tahir, M.S. Rahman, PPG2ABP: Translating photoplethysmogram
(PPG) signals to arterial blood pressure (ABP) waveforms, Bioengineering 9 (11)
(2022) 692.
[22] B. Huang, W. Chen, C.-L. Lin, C.-F. Juang, J. Wang, MLP-BP: A novel framework
for cuffless blood pressure measurement with PPG and ECG signals based on
MLP-mixer neural networks, Biomed. Signal Process. Control 73 (2022) 103404.
[23] F. Schrumpf, P. Frenzel, C. Aust, G. Osterhoff, M. Fuchs, Assessment of noninvasive blood pressure prediction from ppg and rppg signals using deep learning,
Sensors 21 (18) (2021) 6022.
[24] B. Lester, R. Al-Rfou, N. Constant, The power of scale for parameter-efficient
prompt tuning, 2021, arXiv preprint arXiv:2104.08691.
[25] X.L. Li, P. Liang, Prefix-tuning: Optimizing continuous prompts for generation,
2021, arXiv preprint arXiv:2101.00190.
[26] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, G. Neubig, Pre-train, prompt,
and predict: A systematic survey of prompting methods in natural language
processing, ACM Comput. Surv. 55 (9) (2023) 1–35.
[27] X. Liu, K. Ji, Y. Fu, W.L. Tam, Z. Du, Z. Yang, J. Tang, P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally across scales and tasks, 2021,
arXiv preprint arXiv:2110.07602.
[28] M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan, S.-N. Lim,
Visual prompt tuning, in: European Conference on Computer Vision, Springer,
2022, pp. 709–727.
[29] C. Oh, H. Hwang, H.-y. Lee, Y. Lim, G. Jung, J. Jung, H. Choi, K. Song, Blackvip:
Black-box visual prompting for robust transfer learning, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp.
24224–24235.
[30] H. Bahng, A. Jahanian, S. Sankaranarayanan, P. Isola, Exploring visual prompts
for adapting large-scale models, 2022, arXiv preprint arXiv:2203.17274.
[31] K. Zhou, J. Yang, C.C. Loy, Z. Liu, Conditional prompt learning for visionlanguage models, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 16816–16825.
[32] K. Zhou, J. Yang, C.C. Loy, Z. Liu, Learning to prompt for vision-language
models, Int. J. Comput. Vis. 130 (9) (2022) 2337–2348.
[33] H. Xue, F.D. Salim, Promptcast: A new prompt-based learning paradigm for time
series forecasting, IEEE Trans. Knowl. Data Eng. (2023).
[34] W. Wang, P. Mohseni, K.L. Kilgore, L. Najafizadeh, PulseDB: A large, cleaned
dataset based on MIMIC-III and VitalDB for benchmarking cuff-less blood
pressure estimation methods, Front. Digit. Health 4 (2023) 1090854.
[35] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.
[36] D. Dai, Z. Ji, H. Wang, Non-invasive continuous blood pressure estimation from
single-channel PPG based on a temporal convolutional network integrated with
an attention mechanism, Appl. Sci. 14 (14) (2024) 6061.
[37] H.M. Koparır, Ö. Arslan, Cuffless blood pressure estimation from photoplethysmography using deep convolutional neural network and transfer learning,
Biomed. Signal Process. Control 93 (2024) 106194.
[38] C. Ding, Z. Guo, Z. Chen, R.J. Lee, C. Rudin, X. Hu, SiamQuality: a ConvNetbased foundation model for photoplethysmography signals, Physiol. Meas. 45 (8)
(2024) 085004.
Computers in Biology and Medicine 183 (2024) 109216
9
好的,下面我将结合论文中的LaTeX公式,详细说明《GloGen: PPG prompts for few-shot transfer learning in blood pressure estimation》一文的研究思路,并通过一个具体的例子来说明其方法。
血压(Blood Pressure, BP)监测是心血管健康管理的关键指标。传统的血压测量方法依赖于袖带或有创动脉血压测量(Arterial Blood Pressure, ABP),这些方法在实时、连续和无创监测方面存在诸多不便。光电容积描记图(Photoplethysmogram, PPG)是一种可通过简单传感器非侵入性获取的生理信号,已被证实与ABP存在一定相关性,因此利用PPG来预测血压有望实现便捷、实时的无创连续监测。
然而,现有基于PPG的BP预测模型在跨数据集或不同人群(如低血压和高血压高风险人群)时的泛化能力和鲁棒性仍然存在较大挑战。特别是在医疗数据领域,目标任务的数据常常稀缺(few-shot场景),这使得传统的迁移学习策略效用受限。
为了解决上述问题,论文提出了一种名为**GloGen(Global Prompt and Prompt Generator)**的新颖框架,旨在在极少数据条件下,通过prompt式迁移学习手段,将预训练模型对PPG信号的知识高效传递给目标任务,从而提高血压估计的准确性和对不同BP亚群体的鲁棒性。
GloGen的核心思想是利用Prompt Learning的方法,通过引入两种类型的提示(Prompts)——Global Prompt (GP) 和 Instance-wise Prompt (IP),来调整输入的PPG信号,使预训练模型更好地适应目标任务的分布和特性,即使在few-shot的场景下也能获得良好的表现。
GP是一组可训练参数,与任意输入PPG信号线性叠加(加法)以得到改造后的输入。公式表示为:
其中:
GP在所有样本上共享,用于捕捉目标数据集的全局特征或公共模式,帮助模型更好地适配总体分布。
IP是为每个输入样本动态生成的特定“提示”,通过一个称为Prompt Generator的网络生成。具体表示为:
其中:
此外,论文引入了触发向量(Trigger Vector) ,用于补充额外的可训练信息:
为了增强模型在不同BP子群体下的鲁棒性,GloGen设计了一个方差惩罚项(Variance Penalty, VP),鼓励生成的IP在不同BP组间具有多样性。VP的定义为:
其中:
为了避免训练不稳定,VP通过ReLU函数进行调整,最终的损失函数为:
其中, 是控制MSE和VP之间权重的超参数, 是控制ReLU函数阈值的超参数。
为了更直观地理解GloGen的工作原理,我们通过一个具体的例子来说明其流程。
假设我们有一个预训练的模型 ,该模型已在大量PPG数据上训练好,用于血压(BP)的估计。现在,我们希望将该模型迁移到一个新的数据集(目标任务),但目标数据集只有极少量的标注样本(例如,每个BP组只有5个样本)。
输入PPG信号:首先,我们获取目标任务的数据集中的一个PPG信号 。
生成嵌入向量:
生成Instance-wise Prompt (IP):
叠加Prompts:
血压估计:
损失计算与模型更新:
假设目标任务数据集中有四个BP组:Hypo(低血压)、Normal(正常血压)、Prehyper(前高血压)和Hyper2(高血压)。每个BP组有5个样本。
选择一个样本:选择Hypo组中的一个PPG信号 。
生成GP和IP:
叠加Prompts:
其中, 和 分别控制GP和IP的影响力。
输入预训练模型:
预测得到SBP和DBP值。
损失计算:
更新参数:
通过这种方式,GloGen能够在极少数样本的情况下,通过全局和实例化的提示,提高模型在不同BP组上的预测准确性和鲁棒性。
通过去除GP、IP或VP,验证各组件对性能的贡献。结果显示,没有任何一个组件(GP、IP或VP)都会导致性能下降,表明各组件在GloGen框架中都起着关键作用。
论文提出的GloGen框架,通过引入全局提示(GP)和实例化提示(IP)的双Prompt策略,以及方差惩罚(VP),有效提升了在few-shot迁移学习场景下PPG信号的血压估计性能和模型的鲁棒性。通过具体的实验验证,GloGen在不同数据集和不同BP组上均表现出优越的性能,特别是在高风险BP组的预测中显著优于传统方法。
GloGen不仅适用于PPG信号,还具有良好的通用性和可扩展性,可应用于其他生理信号或时间序列预测任务中,为在真实医疗场景中实现高效、精准、可推广的无创血压估计提供了有力的工具。
我还是看不懂,完全看不懂,对于一个初学者来说如何理解呢,这个是基于什么论文的方法,最开始是借鉴什么方法
理解这篇论文《GloGen: PPG prompts for few-shot transfer learning in blood pressure estimation》可能会有些复杂,尤其是对于初学者来说。下面,我将用更简单的语言,结合具体例子,逐步解释论文的核心思想、方法及其来源,帮助你更好地理解这项研究。
血压是衡量心血管健康的关键指标。高血压和低血压都可能导致严重的健康问题,因此,准确、实时地监测血压非常重要。传统的血压测量方法(如袖带式测量)虽然准确,但不够方便,无法实现连续、实时的监测。
光电容积描记图(Photoplethysmogram, PPG)是一种通过简单的传感器(如手环或智能手表)非侵入性地获取的生理信号。PPG信号反映了血液流动和血容量的变化,与血压有一定的相关性。因此,利用PPG信号来估计血压是一种有前景的方法,能够实现便捷、实时的无创血压监测。
虽然使用深度学习模型从PPG信号预测血压已经取得了一些进展,但在以下几个方面仍存在挑战:
为了应对上述挑战,论文提出了**GloGen(Global Prompt and Prompt Generator)**框架。这个框架的核心思想是通过“提示学习”(Prompt Learning)的方法,调整输入的PPG信号,使得预训练模型能够更好地适应新的任务,尤其是在数据量有限的情况下。
Prompt Learning最初来源于自然语言处理(NLP)领域。简单来说,它是一种在不大幅度修改预训练模型的情况下,通过添加“提示”(prompts)来引导模型完成特定任务的方法。这类似于给模型提供一些额外的信息或指示,帮助它更好地理解和处理新任务。
GloGen框架引入了两种类型的提示:
全局提示(Global Prompt, GP):
实例化提示(Instance-wise Prompt, IP):
为了确保不同血压组的IP具有足够的多样性,GloGen引入了方差惩罚(VP)。这个机制鼓励生成的IP在不同血压组之间有明显的差异,从而提高模型在各个组上的鲁棒性。
以下是GloGen框架的具体步骤:
为了更直观地理解GloGen的工作原理,下面通过一个具体的例子来说明:
假设你有一个预训练的深度学习模型,它已经在大量PPG信号数据上训练好,用于预测血压。现在,你希望将这个模型应用到一个新的数据集,但新的数据集只有极少量的标注样本(例如,每个血压组只有5个样本)。
通过这个过程,GloGen能够在只有少量样本的情况下,通过全局和实例化的提示,显著提升模型在不同血压组上的预测准确性和鲁棒性。
GloGen的方法主要借鉴和扩展了以下几个领域的研究成果:
Prompt Learning(提示学习):
Transfer Learning(迁移学习):
Computer Vision(计算机视觉)中的Prompt Learning:
Variance Penalty(方差惩罚):
为了验证各组件(GP、IP、VP)的重要性,研究人员进行了消融实验,即分别去除GP、IP或VP,观察模型性能的变化。结果显示,去除任何一个组件都会导致性能下降,证明这些组件在GloGen框架中都是必不可少的。
GloGen框架为在医疗领域实现高效、精准、可推广的无创血压估计提供了有力的工具,特别是在数据稀缺和需要对不同人群进行准确监测的实际场景中,具有重要的应用潜力。
对于初学者来说,以下几个步骤可以帮助你更好地理解GloGen及其相关概念:
基础知识:
核心概念:
具体方法:
实践练习:
通过以上步骤,你将能够逐步掌握GloGen框架的核心思想和实现方法,并能够应用到实际的血压估计或其他生理信号处理任务中。
希望以上解释能够帮助你更好地理解这篇论文的内容和方法。如果还有具体的问题或需要进一步的解释,请随时提问!