Right Continuity of CDF

बनाया गया: 27 अक्तूबर 2024

का उपयोग करके उत्तर दिया गया O1 Preview द्वारा Chat01

प्रश्न

Please prove that cumulative distribution function is right-countious

विचार

证明累积分布函数的右连续性

首先,我在证明任何一个随机变量 X 的累计分布函数 F 在每个 x ∈ ℝ 上右连续。证明方法包括使用极限公式和平移量 h,让 h 逼近 0,从而证实 F(x+h) 限 h 逼近 0 时等于 F(x)。此外,还利用递减的序列 {x_n} 逼近 x,进一步证明 F 的右连续性。

探讨函数连续性

我正在研究函数F在每个点x的右连续性。通过考虑{xn}趋向x并满足xn > x的序列,目的是证明对于任意ε > 0,有某个δ > 0使得0 < h < δ时,|F(x + h) - F(x)| < ε。

展示连续性

考虑概率测度的性质,展示累积分布函数F(x+) = F(x)。

考察右连续性

我在研究可测集合A_n递减到A时,发现P(∩ A_n)等于P(A_n)的极限。这启示我,类似地,右连续函数F的左极限等于函数值,即F是右连续的。

उत्तर

To prove that a cumulative distribution function (CDF) FF is right-continuous at every point xRx \in \mathbb{R}, we need to show that:

limh0F(x+h)=F(x)\lim_{h \downarrow 0} F(x + h) = F(x)

Proof:

  1. Definition of CDF:

    The cumulative distribution function FF of a random variable XX is defined as:

    F(x)=P(Xx)F(x) = P(X \leq x)
  2. Properties of Probability Measures:

    • For any decreasing sequence of measurable sets {An}\{A_n\} such that AnAA_n \downarrow A, the probability satisfies:

      P(n=1An)=limnP(An)P\left(\bigcap_{n=1}^\infty A_n\right) = \lim_{n \to \infty} P(A_n)
    • This property follows from the continuity of probability measures from above.

  3. Constructing a Decreasing Sequence:

    • Consider a sequence {hn}\{h_n\} such that hn>0h_n > 0 and hn0h_n \downarrow 0.
    • Define xn=x+hnx_n = x + h_n, so xnxx_n \downarrow x.
  4. Relating Events to the Sequence:

    • The events {Xxn}\{X \leq x_n\} form a decreasing sequence of sets:

      {Xxn+1}{Xxn}\{X \leq x_{n+1}\} \subseteq \{X \leq x_n\}

      because xn+1<xnx_{n+1} < x_n.

    • As nn \to \infty, the intersection of these sets approaches {Xx}\{X \leq x\}:

      n=1{Xxn}={Xx}\bigcap_{n=1}^\infty \{X \leq x_n\} = \{X \leq x\}
  5. Applying the Continuity of Probability Measures:

    • Using the property from step 2:

      P(n=1{Xxn})=limnP(Xxn)P\left(\bigcap_{n=1}^\infty \{X \leq x_n\}\right) = \lim_{n \to \infty} P(X \leq x_n)
    • Therefore:

      P(Xx)=limnP(Xxn)P(X \leq x) = \lim_{n \to \infty} P(X \leq x_n)
  6. Conclusion:

    • This shows that:

      limh0F(x+h)=F(x)\lim_{h \downarrow 0} F(x + h) = F(x)
    • Therefore, FF is right-continuous at every point xx.

Note:

  • The key idea is that for any h>0h > 0, F(x+h)F(x + h) approaches F(x)F(x) from above as hh decreases to zero.
  • This property is a consequence of the continuity of probability measures from above and the non-decreasing nature of CDFs.

Therefore, we have proven that the cumulative distribution function FF is right-continuous at every point.

Answer: Because for every real x, F(x + h) decreases to F(x) as h↓0, the CDF F is right-continuous everywhere.

प्रश्न

Can you use the same method to prove that when x->negative infinity, the cumulative funtion equals to 0

विचार

探讨累积分布函数几点知识

探讨零侧极限

在证明累积分布函数F(x)F(x)随着xx趋于负无穷时也趋于0,我们使用概率测度在空集上的连续性。

确定函数特性

函数 F(x)=P(Xx)F(x) = P(X \leq x) 非递减,且上下界为0和1,概率测度 PP 满足 P(R)=1P(\mathbb{R}) = 1

分析递减序列

我正在研究递减的 AnA_n 集合,交集为空集。这表明概率的上连续性,就像以往的证明一样。

你正在研究累积分布函数 (CDF) FF 在趋近负无穷时的行为。你通过定义CDF和概率测度的性质,建立一个递减序列并证明 limxF(x)=0\lim_{x \to -\infty} F(x) = 0 的成立。

定义事件序列

我正在定义事件序列 An={Xxn}A_n = \{X \leq x_n\},其中 xn+1<xnx_{n+1} < x_n。这个序列是递减的,表示 XX 的值随 nn 增加而减小。

उत्तर

Yes, we can use a similar method to prove that the cumulative distribution function (CDF) FF satisfies:

limxF(x)=0\lim_{x \to -\infty} F(x) = 0

Proof:

  1. Definition of CDF:

    The cumulative distribution function FF of a random variable XX is defined as:

    F(x)=P(Xx)F(x) = P(X \leq x)
  2. Properties of Probability Measures:

    • The probability of the empty set is zero:

      P()=0P(\emptyset) = 0
    • For any decreasing sequence of measurable sets {An}\{A_n\} such that AnAA_n \downarrow A, the probability satisfies:

      P(n=1An)=limnP(An)P\left(\bigcap_{n=1}^\infty A_n\right) = \lim_{n \to \infty} P(A_n)
  3. Constructing a Decreasing Sequence:

    • Consider a sequence {xn}\{x_n\} such that xnx_n \to -\infty as nn \to \infty. For example, let xn=nx_n = -n.

    • Define the events:

      An={Xxn}A_n = \{X \leq x_n\}
    • Since xn+1<xnx_{n+1} < x_n, the sequence {An}\{A_n\} is decreasing:

      An+1AnA_{n+1} \subseteq A_n
  4. Limit of the Events:

    • The intersection of all AnA_n is the empty set:

      n=1An=\bigcap_{n=1}^\infty A_n = \emptyset
      • As xnx_n \to -\infty, there are no values of XX less than all xnx_n.
  5. Applying the Continuity of Probability Measures:

    • Using the property from step 2:

      P(n=1An)=limnP(An)P\left(\bigcap_{n=1}^\infty A_n\right) = \lim_{n \to \infty} P(A_n)
      • Since n=1An=\bigcap_{n=1}^\infty A_n = \emptyset:

        P()=0=limnP(Xxn)P(\emptyset) = 0 = \lim_{n \to \infty} P(X \leq x_n)
  6. Conclusion:

    • Therefore:

      limxF(x)=0\lim_{x \to -\infty} F(x) = 0
      • This shows that as xx approaches negative infinity, the cumulative distribution function F(x)F(x) approaches zero.

Therefore, using the same method, we have proven that the cumulative distribution function FF approaches 0 as xx approaches negative infinity.

Answer: Yes; using the same method, we can show that as x approaches negative infinity, F(x) approaches 0.

इस प्रश्नोत्तर को साझा करें