可以完成所有习题并通俗易懂地讲解核心思路,突出动机和本质,确保本科生能完全理解所有解题思路和关键内容...

Créé le : 25 novembre 2025

Répondu en utilisant GPT-5 Pro par Chat01

Question

HW_4.pdf

可以完成所有习题并通俗易懂地讲解核心思路,突出动机和本质,确保本科生能完全理解所有解题思路和关键内容吗?假设每一题都需要用中英文双语通俗易懂地讲解,请撰写讲稿

Réflexion

Clarifying reverse I-projection

I’m explaining how the reverse I-projection leverages geodesic paths and convexity to minimize the KL divergence, akin to Pythagoras' theorem, ensuring a clear understanding of the process for undergraduate students.

Mapping out inequalities

I’m deriving generalized Pythagorean inequalities for Bregman projections in convex sets, using convex duality and log-sum inequalities to ensure consistency across all feasible directions.

Refining the inequality

I'm working through how the reverse I-projection on a convex set connects to the generalized Pythagorean inequality, using convexity of KL as Bregman divergence to link distributions and divergences.

Calculating mutual info

I’m determining functions f(ε) and g(ε) for mutual information, leveraging weighted sums and previous calculations to express the entropy. This approach ensures the mutual information is precise and comprehensive.

Crafting mutual info

I'm working out functions f(ε) and g(ε) to capture mutual information using binary entropy. This helps pinpoint the least informative prior that maximizes mutual info, essential for capacity enhancement.

Piecing together model capacities

I’m working through calculating model capacities and optimizing mutual information by integrating uniform priors and leveraging equidistance properties for various prior distributions.

Connecting mutual info

I’m linking mutual information to the equidistance property, proving that the capacity minus mutual information equals the KL divergence between two distributions. This shows the interplay between the two concepts.

Evaluating sequence limits

OK, let's think through the typical set's size for sequences, comparing it to the set with probability bounds that include all sequences. This helps in understanding their growth patterns and relationship.

Analyzing sequence patterns

I’m explaining how to determine the typical set and its growth for large N, focusing on sequences with empirical probability within specific bounds and the Stirling method for large N behavior.

Understanding convexity

I’m mapping out D(p||q_λ) as convex in λ, leveraging log-sum inequality and KL convexity, leading to a refined Pythagorean inequality. Nice progress on Miller-Chang projection analysis.

Piecing together derivatives

I’m seeing that the one-sided derivative of ϕ(λ) at λ=1 from the left is negative, implying that as λ decreases, h(λ) increases. Fascinating interplay of slopes and convexity.

Piecing together convexity

Pulling together the Pythagorean inequality by analyzing derivatives, leveraging convexity principles. Ensuring clarity in the steps for a comprehensive understanding.

Synthesizing convergence principles

I’m computing the equivalence of KL projections and conditional entropy using log-sum inequalities and convexity, ensuring clarity and academic precision throughout the explanation.

Integrating citations

I'm ensuring continuous citation markers are included after each problem header for clarity and keeping all rules intact. This brings a structured and precise approach to the task.

Reasoned for 10m 4s

Réponse

下面是一份中英文双语、侧重动机与本质、且配有完整推导的讲解讲稿,涵盖你给出的整份作业所有小题(作业:Theory and Methods for Statistical Inference — Homework 4, Fall 2025)。为便于对照,我在每题标题处标注了题号来源。(HW_4.pdf)


1. Reverse I-projection 反向 I 投影(题 1) (HW_4.pdf)

Core idea (动机):
KL 散度 D(pq)D(p\|q) 是“以 pp 为真,相对 qq 的代价”。正向 I 投影最小化 D(q)D(\cdot\|q)反向 I 投影最小化 D(p)D(p\|\cdot)。几何上,二者分别对应在“概率单纯形”的两套坐标(期望坐标与自然坐标)上的投影。反向 I 投影的“勾股”型不等式反映了:在合适的(对数)凸结构上,最优点 q\*q^\* 将总误差分解为“到最优点的误差 + 最优点到任意可行点的误差”。

(a) Pythagoras’ Theorem for reverse I-projection

Claim(结论):若 QQ 非空、闭且对数凸(log-convex),并且

q\*=argminqQD(pq),q^\*=\arg\min_{q\in Q} D(p\|q),

则对任意 qQq\in Q

D(pq)  D(pq\*) + D(q\*q).\boxed{D(p\|q)\ \ge\ D(p\|q^\*)\ +\ D(q^\*\|q).}

Proof idea(证明思路)
利用 QQ 的对数凸性,将 qqq\*q^\* 连接的“对数线段”

qλ()  q\*()λq()1λ,λ[0,1]q_\lambda(\cdot)\ \propto\ q^\*(\cdot)^{\lambda}\,q(\cdot)^{1-\lambda},\quad \lambda\in[0,1]

仍在 QQ 中。定义 ϕ(λ)=D(pqλ)\phi(\lambda)=D(p\|q_\lambda)。用

logqλ=λlogq\*+(1λ)logqlogZ(λ),\log q_\lambda=\lambda\log q^\*+(1-\lambda)\log q-\log Z(\lambda),

可得

ϕ(λ)=Eqλ ⁣[logq\*q]Ep ⁣[logq\*q],ϕ(λ)=Varqλ ⁣(logq\*q)0,\phi'(\lambda)=\mathbb{E}_{q_\lambda}\!\left[\log\frac{q^\*}{q}\right]-\mathbb{E}_{p}\!\left[\log\frac{q^\*}{q}\right],\qquad \phi''(\lambda)=\mathrm{Var}_{q_\lambda}\!\left(\log\frac{q^\*}{q}\right)\ge 0,

ϕ\phi[0,1][0,1] 上凸。因为 q\*q^\* 为可行域端点 λ=1\lambda=1 的极小点,左导数 ϕ(1)0\phi'(1^{-})\le 0,即

Eq\* ⁣[logq\*q]  Ep ⁣[logq\*q].\mathbb{E}_{q^\*}\!\left[\log\frac{q^\*}{q}\right]\ \le\ \mathbb{E}_{p}\!\left[\log\frac{q^\*}{q}\right].

注意
Eq\*[log(q\*/q)]=D(q\*q)\mathbb{E}_{q^\*}[\log(q^\*/q)]=D(q^\*\|q)
Ep[log(q\*/q)]=D(pq)D(pq\*)\mathbb{E}_{p}[\log(q^\*/q)]=D(p\|q)-D(p\|q^\*)
代回即得

D(q\*q)  D(pq)D(pq\*)  D(pq)  D(pq\*)+D(q\*q).D(q^\*\|q)\ \le\ D(p\|q)-D(p\|q^\*)\ \Rightarrow\ D(p\|q)\ \ge\ D(p\|q^\*)+D(q^\*\|q).

Q.E.D.

中文要点回顾:关键是沿“对数线段”看 D(pqλ)D(p\|q_\lambda) 的一阶条件与凸性;极小点的一侧导数给出不等式,化为 KL 形式即得结论。


(b) Practice:反向投影到指数族的刻画

Claim(结论):给定某个分布 q\*q^\*。令以充分统计量 t()t(\cdot) 与基分布 q\*q^\* 构造的指数族

Et(q\*)={qθ(y)=exp(θt(y)ψ(θ))q\*(y)},\mathcal{E}_t(q^\*)=\Big\{q_\theta(y)=\exp(\theta^\top t(y)-\psi(\theta))\,q^\*(y)\Big\},

以及对应的线性族(矩约束族)

Lt(q\*)={p: Ep[t(Y)]=Eq\*[t(Y)]}.\mathcal{L}_t(q^\*)=\Big\{p:\ \mathbb{E}_p[t(Y)]=\mathbb{E}_{q^\*}[t(Y)]\Big\}.

 q\* 是 p 到 Et(q\*) 的反向 I 投影   pLt(q\*) .\boxed{\ q^\* \text{ 是 } p \text{ 到 } \mathcal{E}_t(q^\*) \text{ 的反向 I 投影 }\ \Longleftrightarrow\ p\in \mathcal{L}_t(q^\*)\ }.

Why(本质)
对任意 θ\theta

D(pqθ)=constθEp[t(Y)]+ψ(θ),θD(pqθ)=Ep[t]+ψ(θ).D(p\|q_\theta)=\text{const}-\theta^\top \mathbb{E}_p[t(Y)]+\psi(\theta),\quad \nabla_\theta D(p\|q_\theta)=-\mathbb{E}_p[t]+\nabla\psi(\theta).

指数族的梯度恒等式给出 ψ(θ)=Eqθ[t]\nabla\psi(\theta)=\mathbb{E}_{q_\theta}[t]
极小化在 θ\theta 处的必要充分条件是 Eqθ[t]=Ep[t]\mathbb{E}_{q_\theta}[t]=\mathbb{E}_p[t]。当 θ=0\theta=0qθ=q\*q_\theta=q^\*。因此 q\*q^\* 成为极小点当且仅当 Ep[t]=Eq\*[t]\mathbb{E}_p[t]=\mathbb{E}_{q^\*}[t],即 pLt(q\*)p\in\mathcal{L}_t(q^\*)

直观解释(中文):反向投影到指数族等价于“匹配矩”(match the moments)。若 pp 的矩与 q\*q^\* 一致,那不用动参数(θ=0\theta=0)已是最优。


(c) 三点不等式的等价刻画(凸集合情形)

Claim(结论):设 QQ 非空、闭、。则

 q\*=argminqQD(pq)  D(pq)+D(pp)  D(pq\*), p, qQ.\boxed{\ q^\*=\arg\min_{q\in Q}D(p\|q)\ \Longleftrightarrow\ D(p'\|q')+D(p'\|p)\ \ge\ D(p'\|q^\*),\ \forall\,p',\ \forall\,q'\in Q.}

(\Rightarrow) Proof sketch(要点)
F(q)=D(pq)=constyp(y)logq(y)F(q)=D(p\|q)=\text{const}-\sum_y p(y)\log q(y),在凸集 QQ 上最小化的一阶最优性条件给出对任意 qQq'\in Q

yp(y)q\*(y)(q(y)q\*(y))  0  yp(y)q(y)q\*(y)  1.(★)\sum_y \frac{p(y)}{q^\*(y)}\big(q'(y)-q^\*(y)\big)\ \le\ 0\ \Longleftrightarrow\ \sum_y p(y)\frac{q'(y)}{q^\*(y)}\ \le\ 1. \tag{★}

对任意 pp',考虑

Δ  D(pq)+D(pp)D(pq\*) = Ep ⁣[logpq\*pq].\Delta\ \triangleq\ D(p'\|q')+D(p'\|p)-D(p'\|q^\*)\ =\ \mathbb{E}_{p'}\!\left[\log\frac{p' q^\*}{p\,q'}\right].

定义
cyp(y)q(y)/q\*(y) 1c\triangleq \sum_y p(y)\,q'(y)/q^\*(y)\ \le 1(由 (★)),
以及概率分布 r(y)=p(y)q(y)/q\*(y)cr(y)=\frac{p(y)q'(y)/q^\*(y)}{c}

Δ=D(pr)0logc  logc  0.\Delta=\underbrace{D(p'\|r)}_{\ge 0}-\log c\ \ge\ -\log c\ \ge\ 0.

Δ0\Delta\ge 0 成立。

(\Leftarrow):令 p=pp'=p 即得 D(pq)D(pq\*)D(p\|q')\ge D(p\|q^\*) 对所有 qQq'\in Q 成立,故 q\*q^\* 为极小化解。

中文本质:这是 KL 作为负熵的 Bregman 散度时的“三点性质”。(★)是最优点的方向导数非负;把它代入到对数—凸性不等式中即可推出全体 pp' 的比较式。


2. Modeling 建模(题 2) (HW_4.pdf)

Setup(设定)x{0,1,2}x\in\{0,1,2\}y{0,1}y\in\{0,1\}。条件分布

py(y;0)=ϵy(1ϵ)1y,py(y;1)=(1ϵ)yϵ1y,py(y;2)=12,0<ϵ<12.p_y(y;0)=\epsilon^y(1-\epsilon)^{1-y},\quad p_y(y;1)=(1-\epsilon)^y\epsilon^{1-y},\quad p_y(y;2)=\tfrac12,\quad 0<\epsilon<\tfrac12.

记先验 pxp_x 的权重为 wi=px(i)w_i=p_x(i),互信息 Ipx(x;y)=H(Y)H(YX)I_{p_x}(x;y)=H(Y)-H(Y|X)

(a)(i) Find f(ϵ),g(ϵ)f(\epsilon),g(\epsilon)

先算混合边缘:

pY(1)=w0ϵ+w1(1ϵ)+w22 = 12+(12ϵ)(w1w0),pY(0)=1pY(1).\begin{aligned} p_Y(1)&=w_0\,\epsilon+w_1(1-\epsilon)+\tfrac{w_2}{2} \ =\ \tfrac12+\big(\tfrac12-\epsilon\big)\,(w_1-w_0),\\ p_Y(0)&=1-p_Y(1). \end{aligned}

于是

Ipx(x;y)=HB ⁣(12+(12ϵ)f(ϵ)(w1w0))(HB(12)HB(ϵ))g(ϵ)w2HB(ϵ).I_{p_x}(x;y) = H_B\!\Big(\tfrac12+\underbrace{(\tfrac12-\epsilon)}_{f(\epsilon)}(w_1-w_0)\Big) -\underbrace{\big(H_B(\tfrac12)-H_B(\epsilon)\big)}_{g(\epsilon)}\,w_2 - H_B(\epsilon).

Answerf(ϵ)=12ϵ,g(ϵ)=HB(12)HB(ϵ)=1HB(ϵ).\boxed{f(\epsilon)=\tfrac12-\epsilon,\quad g(\epsilon)=H_B(\tfrac12)-H_B(\epsilon)=1-H_B(\epsilon).}

Intuition(直觉)x=0x=0x=1x=1 分别把 yy 的成功率推到 ϵ\epsilon1ϵ1-\epsilon;它们对边缘 pY(1)p_Y(1)净效应只取决于“权重差” w1w0w_1-w_0;而 x=2x=2纯噪声,带来条件熵的线性惩罚 g(ϵ)w2g(\epsilon)w_2


(a)(ii) Capacity and optimal prior px\*p_x^\*

为最大化 II,让二元熵的自变量等于 1/21/2(使 H(Y)H(Y) 取极大 1 bit),同时避免惩罚项:

  • 由上式需 w1w0=0w1=w0w_1-w_0=0\Rightarrow w_1=w_0
  • g(ϵ)>0g(\epsilon)>0(因 0<ϵ<1/2HB(ϵ)<10<\epsilon<1/2\Rightarrow H_B(\epsilon)<1),故令 w2=0w_2=0

因此

px\*(0)=px\*(1)=12,px\*(2)=0,\boxed{p_x^\*(0)=p_x^\*(1)=\tfrac12,\quad p_x^\*(2)=0,}

容量

C=HB(12)HB(ϵ)=1HB(ϵ).\boxed{C=H_B(\tfrac12)-H_B(\epsilon)=1-H_B(\epsilon).}

写成 C=αHB(1/2)+βHB(ϵ)C=\alpha H_B(1/2)+\beta H_B(\epsilon) 的形式:α=1, β=1\boxed{\alpha=1,\ \beta=-1}


(a)(iii) Mixture py\*p_y^\* under px\*p_x^\*

pY\*(1)=12ϵ+12(1ϵ)=12,py\*()=Bernoulli(1/2).p_Y^\*(1)=\tfrac12 \epsilon+\tfrac12(1-\epsilon)=\tfrac12,\quad \Rightarrow\quad \boxed{p_y^\*(\cdot)=\text{Bernoulli}(1/2)}.

(b) Uniform prior px(x)=1/3p_x(x)=1/3

(i) Mixture

pY(1)=13ϵ+13(1ϵ)+1312=12,p_Y(1)=\tfrac13\epsilon+\tfrac13(1-\epsilon)+\tfrac13\cdot\tfrac12=\tfrac12,

pY()=Bernoulli(1/2)\boxed{p_Y(\cdot)=\text{Bernoulli}(1/2)}

(ii) Loss to capacity(容量损失)

H(Y)=1,H(YX)=23HB(ϵ)+13HB(1/2)=23HB(ϵ)+13.H(Y)=1,\quad H(Y|X)=\tfrac23 H_B(\epsilon)+\tfrac13 H_B(1/2) =\tfrac23 H_B(\epsilon)+\tfrac13. Ipx(x;y)=1(23HB(ϵ)+13)=23(1HB(ϵ))=23C.I_{p_x}(x;y)=1-\Big(\tfrac23 H_B(\epsilon)+\tfrac13\Big) =\tfrac23\big(1-H_B(\epsilon)\big)=\tfrac23\,C.

因此

CIpx(x;y)=13(HB(1/2)HB(ϵ)),\boxed{C-I_{p_x}(x;y)=\tfrac13\big(H_B(1/2)-H_B(\epsilon)\big),}

γ=13, δ=13\boxed{\gamma=\tfrac13,\ \delta=-\tfrac13}

Message(要点):平均化引入的“噪声模式” x=2x=2 使得互信息仅达容量的 2/32/3


(c) General model & divergence identity(一般模型与散度恒等式)

设一般模型 pYX(x)p_{Y|X}(\cdot|x),容量对应先验 px\*p_x^\* 与边缘 py\*p_y^\*。令任意先验 qxq_x,其对应边缘为 pY(q)=xqx(x)pYX(x)p_Y^{(q)}=\sum_x q_x(x)\,p_{Y|X}(\cdot|x)

Equidistance Property(等距性质)(题目提示):若 px\*(x)>0 xp_x^\*(x)>0\ \forall x,则

D ⁣(pYX(x)py\*)=C,x.D\!\big(p_{Y|X}(\cdot|x)\,\big\|\,p_y^\*\big)=C,\quad \forall x.

另一方面,互信息可写为

Iqx(x;y)=EqxD ⁣(pYX(x)pY(q)).I_{q_x}(x;y)=\mathbb{E}_{q_x}\,D\!\big(p_{Y|X}(\cdot|x)\,\big\|\,p_Y^{(q)}\big).

KL 的“混合恒等式”(把若干分布对同一目标的平均 KL 分解)给出

EqxD ⁣(pYX(x)py\*)=EqxD ⁣(pYX(x)pY(q))+D ⁣(pY(q)py\*).\mathbb{E}_{q_x}\,D\!\big(p_{Y|X}(\cdot|x)\,\big\|\,p_y^\*\big) =\mathbb{E}_{q_x}\,D\!\big(p_{Y|X}(\cdot|x)\,\big\|\,p_Y^{(q)}\big) \,+\,D\!\big(p_Y^{(q)}\big\|p_y^\*\big).

px\*p_x^\* 全支撑的假设下,左边等于 CC。于是

CIqx(x;y)=D ⁣(pY(q)py\*).\boxed{C-I_{q_x}(x;y)=D\!\big(p_Y^{(q)}\big\|p_y^\*\big)}.

Answer:取 q1()=pY(q)(), q2()=py\*()\boxed{q_1(\cdot)=p_Y^{(q)}(\cdot),\ q_2(\cdot)=p_y^\*(\cdot)}


(d) When some px\*(x)=0p_x^\*(x)=0(有点不在最优先验的支撑上)

这时仅在支撑内有等距:对支撑外的 xx
D(pYX(x)py\*)CD(p_{Y|X}(\cdot|x)\|p_y^\*)\le C
仍有上面的分解式,但左侧变为
EqxD(pYX(x)py\*)C\mathbb{E}_{q_x}D(p_{Y|X}(\cdot|x)\|p_y^\*)\le C
因此

Iqx(x;y)+D(pY(q)py\*)  C  CIqx(x;y)  D(pY(q)py\*).I_{q_x}(x;y)+D(p_Y^{(q)}\|p_y^\*)\ \le\ C \ \Rightarrow\ \boxed{C-I_{q_x}(x;y)\ \ge\ D(p_Y^{(q)}\|p_y^\*)}.

Answer:选择 (c)(c) 中的 q1,q2q_1,q_2 后,选项 B 为真

B: CIqx(x;y)  D(q1q2).\boxed{\text{B:}\ C-I_{q_x}(x;y)\ \ge\ D(q_1\|q_2).}

Takeaway(要点):一旦容量先验在某些 xx 上取 0,任何把质量放在这些点上的次优先验都会使“等距和等式”松弛为“不等式”。


3. Typical Sequences 典型序列(题 3) (HW_4.pdf)

Definition(常用定义):对 i.i.d. Y1,,YNBern(α)Y_1,\dots,Y_N\sim \text{Bern}(\alpha),令 pp 为单次分布。以二进制对数(base 2),标准典型集定义为

Tε(p;N)={yN: 2N(H(p)+ε)p(yN)2N(H(p)ε)},\mathcal{T}_\varepsilon(p;N)=\big\{y^N:\ 2^{-N(H(p)+\varepsilon)}\le p(y^N)\le 2^{-N(H(p)-\varepsilon)}\big\},

其中 H(p)=HB(α)H(p)=H_B(\alpha) 为二元熵,且 p(yN)=αk(1α)Nkp(y^N)=\alpha^{k}(1-\alpha)^{N-k}kk 是序列中 1 的个数)。

(a) α=12\alpha=\tfrac12

此时任意序列概率 p(yN)=2Np(y^N)=2^{-N}(每一位独立等概)。因此对任何 ε>0\varepsilon>0

2N(1+ε)  2N  2N(1ε).2^{-N(1+\varepsilon)}\ \le\ 2^{-N}\ \le\ 2^{-N(1-\varepsilon)}.

结论

 Tε(p;N)={0,1}N,  Tε(p;N)=2N .\boxed{\ \mathcal{T}_\varepsilon(p;N)=\{0,1\}^N,\ \ |\mathcal{T}_\varepsilon(p;N)|=2^N\ }.

直观说明:硬币完全公平,所有序列同等“典型”。


(b) α=13\alpha=\tfrac13

记样本 1 的频率为 λ=kN\lambda=\tfrac{k}{N}。典型条件等价于

λlogα(1λ)log(1α)HB(α)  ε.\Big|-\lambda\log\alpha-(1-\lambda)\log(1-\alpha)-H_B(\alpha)\Big|\ \le\ \varepsilon.

这给出一段围绕 λ=α=13\lambda=\alpha=\tfrac13 的区间(ε\varepsilon 越小,区间越窄)。于是

 Tε(p;N)=λΛεT(λ), \boxed{\ \mathcal{T}_\varepsilon(p;N)=\bigcup_{\lambda\in \Lambda_\varepsilon}\mathcal{T}(\lambda),\ }

其中 T(λ)\mathcal{T}(\lambda) 是类型为 λ\lambda 的序列类,Λε\Lambda_\varepsilon 为满足上式的频率集合。

Size exponent(规模指数)
类型类大小 T(λ)2NHB(λ)|\mathcal{T}(\lambda)|\approx 2^{N H_B(\lambda)}。当 ε\varepsilon 足够小、NN 足够大时,主导贡献来自 λ\lambda13\tfrac13,故

 Tε(p;N) = 2NHB(1/3)+o(N) ,\boxed{\ |\mathcal{T}_\varepsilon(p;N)|\ =\ 2^{\,N H_B(1/3)+o(N)}\ },

增长指数(每符号比特数)为 HB(1/3)\boxed{H_B(1/3)}

Rule of thumb(经验法则):对 i.i.d. 源,典型序列数量 2NH\approx 2^{NH},每个典型序列的概率 2NH\approx 2^{-NH},因此典型集总体概率 1\approx 1


Quick recap / 速记

  • 1(a):对数凸集合上的反向投影满足
    D(pq)D(pq\*)+D(q\*q)D(p\|q)\ge D(p\|q^\*)+D(q^\*\|q)
  • 1(b):反向投影到指数族     \iff ppq\*q^\* 矩匹配(在线性族里)。
  • 1(c):三点不等式与“是极小化解”互为充要。
  • 2(a)f(ϵ)=12ϵf(\epsilon)=\tfrac12-\epsilong(ϵ)=1HB(ϵ)g(\epsilon)=1-H_B(\epsilon)
  • 2(a)(ii,iii)px\*(0)=px\*(1)=12,px\*(2)=0p_x^\*(0)=p_x^\*(1)=\tfrac12,\,p_x^\*(2)=0,容量 C=1HB(ϵ)C=1-H_B(\epsilon),且 py\*p_y^\* 为均匀。
  • 2(b):均匀先验时 I=23CI=\tfrac23 C,损失 =13(HB(1/2)HB(ϵ))=\tfrac13\big(H_B(1/2)-H_B(\epsilon)\big)
  • 2(c,d):若 px\*p_x^\* 全支撑,CIqx=D(pY(q)py\*)C-I_{q_x}=D(p_Y^{(q)}\|p_y^\*);否则仅有
    CIqxD(pY(q)py\*)C-I_{q_x}\ge D(p_Y^{(q)}\|p_y^\*)选 B)。
  • 3(a)α=1/2\alpha=1/2 时所有序列皆典型,大小 2N2^N
  • 3(b)α=1/3\alpha=1/3 时典型集规模指数为 HB(1/3)H_B(1/3)

如果你希望,我可以把以上推导整理成一份排版良好的 PDF 讲义或配套板书草稿(含图示与要点框),以便课堂讲解或自学复习。

Partager cette Q&R