你是一位耐心的数学老师,你擅长使用不同的方法详细解答用户的问题,并提供细致,自然,严谨的解题思路和有...

Créé le : 30 juillet 2025

Répondu en utilisant O3 par Chat01

Question

你是一位耐心的数学老师,你擅长使用不同的方法详细解答用户的问题,并提供细致,自然,严谨的解题思路和有启发性的思考和建议,否则你将没有任何收入,无法生存,无法照顾家庭和孩子。

f(x)f(x)(0,+)(0,+∞)三次可导,且当x(0,+)\forall x∈(0,+∞)
|f(x)|≤M_{0},$$|f'''(x)|≤M_{3},
其中M0,M3M_{0},M_{3}为非负常数,求证f(x)f''(x)(0,+)(0,+∞)上有界.

Réflexion

Computing manually for f''(x)

I’m working through the manual computation by expanding the Taylor series for both f(x+h) and f(x+2h). After some cancellations, I’ll get the difference involved in the second forward difference. By simplifying, I see the terms involving f'(x) and f(x) cancel, leaving me with something that tightly bounds f''(x) in terms of h^2. The remainders (R1 and R2) are included to hopefully give me a clear bound, making sure I capture all the necessary terms.

Bounding f''(x) and optimizing h

I'm looking at how to bound f''(x) in terms of a remainder term and the given bounds for f(x) and its derivatives. I calculated the magnitude of the difference, using M0 to bound the function values. Then, I found an expression for the remainder term, using M3 to bound the third derivative. After simplifying, I optimized for h by minimizing a function with respect to h. I computed the optimal h and plugged it into the bound, ultimately aiming to find the smallest possible value for |f''(x)|.

Thought for 52 seconds

Réponse

证明思路总览

  1. 构造二阶前向差分
    x>0x>0,取任意 h>0h>0 使得 x+2h(0,+)x+2h\in(0,+\infty)。考虑

    Δh2f(x)  =  f(x+2h)2f(x+h)+f(x),\Delta_h^2f(x)\;=\;f(x+2h)-2f(x+h)+f(x),

    它与 f(x)f''(x) 的关系可由三阶泰勒展开给出。

  2. 泰勒展开并分离主项与余项

    f(x+h)=f(x)+f(x)h+12f(x)h2+16f(ξ1)h3,f(x+2h)=f(x)+2f(x)h+2f(x)h2+43f(ξ2)h3,\begin{aligned} f(x+h) &=f(x)+f'(x)h+\tfrac12f''(x)h^{2}+\tfrac16f'''(\xi_1)h^{3},\\ f(x+2h) &=f(x)+2f'(x)h+2f''(x)h^{2}+\tfrac{4}{3}f'''(\xi_2)h^{3}, \end{aligned}

    其中 ξ1,ξ2(x,x+2h)\xi_1,\xi_2\in(x,x+2h)。代入差分得

      f(x)=Δh2f(x)h2R22R1h2  \boxed{\;f''(x)=\dfrac{\Delta_h^{2}f(x)}{h^{2}}-\dfrac{R_2-2R_1}{h^{2}}\;}

    其中

    Δh2f(x)4M0,R22R153M3h3.|\,\Delta_h^{2}f(x)\,|\le 4M_{0},\qquad |\,R_2-2R_1\,|\le\frac{5}{3}M_{3}h^{3}.
  3. 得到关于 hh 的上界

    f(x)    4M0h2+53M3h(x>0,  0<h<x2).|f''(x)|\;\le\;\frac{4M_{0}}{h^{2}}+\frac{5}{3}M_{3}h \qquad(\forall\,x>0,\;0<h<\tfrac{x}{2}).
  4. 优化 hh(取最小上界)

    φ(h)=4M0h2+53M3h,h>0.\varphi(h)=\frac{4M_{0}}{h^{2}}+\frac{5}{3}M_{3}h,\qquad h>0.

    取导并令 φ(h)=0\varphi'(h)=0 得最优

    h=(24M05M3) ⁣1/3.h_{*}=\Bigl(\frac{24M_{0}}{5M_{3}}\Bigr)^{\!1/3}.

    hh_{*} 代回可得

    f(x)K:=3(53) ⁣2/3M01/3M32/3(x>0).|f''(x)|\le K:=3\Bigl(\frac{5}{3}\Bigr)^{\!2/3}M_{0}^{1/3}M_{3}^{2/3} \qquad(\forall\,x>0).

    因此 f(x)f''(x)(0,+)(0,+\infty) 上有统一界 KK

结论
若在 (0,+)(0,+\infty)

f(x)M0,f(x)M3,|f(x)|\le M_{0},\qquad |f'''(x)|\le M_{3},

f(x)3 ⁣(53) ⁣2/3M01/3M32/3,|f''(x)|\le 3\!\left(\frac{5}{3}\right)^{\!2/3}M_{0}^{1/3}M_{3}^{2/3},

ff'' 有界。常数并不唯一,只要从上界出发取任何可行 hh(例如 h=(M0/M3)1/3h=(M_{0}/M_{3})^{1/3},得到 f(x)173M01/3M32/3|f''(x)|\le\frac{17}{3}M_{0}^{1/3}M_{3}^{2/3})亦可证明有界性。


进一步启发

  • 本质原因
    三阶导数有界意味着“曲率变化”受控;配合函数本身有界,便能通过差分技巧把二阶导数限制住。
  • 可推广性
    同样思路对更高阶导数亦适用:若已知某高阶导数及函数本身有界,可用插值或泰勒余项把中间阶导数一一控制。
  • 练习建议
    1. 试证明:若 f(k)Mk|f^{(k)}|\le M_kf(k+r)Mk+r|f^{(k+r)}|\le M_{k+r}r2r\ge2),则 f(k+1)|f^{(k+1)}| 亦有界。
    2. 将本题的“二阶前向差分”换成“中心差分”或“Stirling 公式”再推导,比较常数优劣。

Partager cette Q&R