极坐标面积计算

Créé le : 27 janvier 2025

Répondu en utilisant O1 par Chat01

Question

求 r^2 = 2a^2cos(2θ) 围成区域的面积

Réflexion

Piecing together the area

I'm examining the polar equation r2=2a2cos(2θ)r^2 = 2a^2 \cos(2θ) to find the angular range where cos(2θ)0\cos(2θ) \geq 0. This involves analyzing the integrals within the specified range to calculate the area.

Clarifying the intervals

I’m digging into the specific intervals for θ\theta where cos(2θ)0\cos(2θ) \geq 0, ensuring the analysis covers the principal domain of 00 to 2π.

Identifying valid intervals

I’m systematically testing intervals of θ\theta to determine where cos(2θ)0\cos(2θ) \geq 0 within [0,2π][0, 2π]. This helps pinpoint the valid segments for the area calculation.

Refining the interval

I'm verifying that cos(2θ)0\cos(2θ) \geq 0 in the interval [7π/4,2π][7π/4, 2π]. Adjusting my approach to ensure the calculations are accurate within this range.

Pinpointing valid intervals

I’ve identified the valid intervals for r20r^2 \geq 0 in θ\theta as [0,π/4][0, \pi/4] and [3π/4,5π/4][3\pi/4, 5\pi/4]. Then, I’m calculating the area using these intervals.

Breaking down the integration

I’m integrating cos(2θ)\cos(2θ) over [0,π/4][0, \pi/4] and [3π/4,5π/4][3\pi/4, 5\pi/4]. The antiderivative is (1/2)sin(2θ)(1/2) \sin(2θ), and I evaluate these integrals to find the area.

Combining integrals

I’m integrating over the intervals [0,π/4][0, \pi/4] and [3π/4,5π/4][3\pi/4, 5\pi/4], and then factoring in (1/2)(1/2) for the area calculation.

Finalizing the area

I’m re-evaluating the integral of cos(2θ)\cos(2θ) over the specified intervals, ensuring the factor (1/2)(1/2) is correctly applied, leading to the final area expression.

Mapping out the area

I’ve determined the area using the polar equation (1/2)r2dθ(1/2) \int r^2 dθ within the specified intervals, leading to the final expression 3a2/23a^2/2.

Verifying the result

I’ve confirmed that the final area enclosed by the curve r2=2a2cos(2θ)r^2= 2 a^2 \cos(2θ) is 3a22\frac{3a^2}{2}, noting the curve's resemblance to a scaled lemniscate.

Thought about r^2 = 2a^2cos(2θ) 形状,持续 1m 56s

Réponse

下面给出详细的推导步骤。我们要计算由极坐标方程

r2=2a2cos(2θ)r^2 = 2 a^2 \cos(2\theta)

所围成的区域的面积。


1. 确定 r20r^2\ge 0 对应的 θ\theta 范围

因为半径平方 r2r^2 必须非负,所以需要满足

2a2cos(2θ)0cos(2θ)0.2 a^2 \cos(2\theta) \ge 0 \quad\Longrightarrow\quad \cos(2\theta) \ge 0.

0θ<2π0 \le \theta < 2\pi 内,cos(2θ)\cos(2\theta) 为非负的区间可通过“找零点+符号检测”来确定。

  • cos(2θ)=0\cos(2\theta)=0 时,2θ=π2+kπ2\theta = \tfrac{\pi}{2} + k\pi
    因而 θ=π4+kπ2.\theta = \frac{\pi}{4} + \frac{k\pi}{2}.
  • 0θ<2π0 \le \theta < 2\pi 中,零点依次是 π4,  3π4,  5π4,  7π4.\frac{\pi}{4},\;\frac{3\pi}{4},\;\frac{5\pi}{4},\;\frac{7\pi}{4}.
  • 检验相邻零点间 cos(2θ)\cos(2\theta) 的正负性,可得: cos(2θ)0[0,π4]    [3π4,5π4].\cos(2\theta) \ge 0 \quad \text{在} \quad [0,\, \tfrac{\pi}{4}] \;\cup\; [\tfrac{3\pi}{4},\, \tfrac{5\pi}{4}].

因此,真正有面积贡献的 θ\theta 范围是

θ[0,π4]    [3π4,5π4].\theta \in [0,\, \tfrac{\pi}{4}] \;\cup\; [\tfrac{3\pi}{4},\, \tfrac{5\pi}{4}].

2. 用极坐标面积公式计算

极坐标下计算面积的公式为

Area=12r2(θ)dθ.\text{Area} = \frac{1}{2} \int r^2(\theta)\,d\theta.

在本题中,r2(θ)=2a2cos(2θ)r^2(\theta) = 2 a^2 \cos(2\theta)
故对满足 cos(2θ)0\cos(2\theta)\ge0 的区间做分段积分:

Area=12[0π/42a2cos(2θ)dθ  +  π/43π/4 ⁣(负值区不计)  +  3π/45π/42a2cos(2θ)dθ].\text{Area} = \frac{1}{2} \biggl[ \int_{0}^{\pi/4} 2 a^2 \cos(2\theta)\,d\theta \;+\; \int_{\pi/4}^{3\pi/4}\! (\text{负值区不计}) \;+\; \int_{3\pi/4}^{5\pi/4} 2 a^2 \cos(2\theta)\,d\theta \biggr].

实际只需在区间 [0,π4][0,\tfrac{\pi}{4}][3π4,5π4][\tfrac{3\pi}{4}, \tfrac{5\pi}{4}] 积分,其他区间因为 cos(2θ)<0\cos(2\theta)<0 对面积无贡献。

将常数 2a22 a^2 和系数 12\tfrac12 合并后,可以写成

Area=(12)(2a2)[0π/4cos(2θ)dθ  +  3π/45π/4cos(2θ)dθ]=a2[0π/4cos(2θ)dθ  +  3π/45π/4cos(2θ)dθ].\text{Area} = \left(\frac{1}{2}\right)\bigl(2 a^2\bigr) \left[ \int_{0}^{\pi/4} \cos(2\theta)\,d\theta \;+\; \int_{3\pi/4}^{5\pi/4} \cos(2\theta)\,d\theta \right] = a^2 \left[ \int_{0}^{\pi/4} \cos(2\theta)\,d\theta \;+\; \int_{3\pi/4}^{5\pi/4} \cos(2\theta)\,d\theta \right].

2.1 第一个区间 [0,π/4][0,\, \pi/4]

0π/4cos(2θ)dθ=[12sin(2θ)]0π/4=12[sin(π2)sin(0)]=12×(10)=12.\int_{0}^{\pi/4} \cos(2\theta)\,d\theta = \left[ \tfrac{1}{2} \sin(2\theta) \right]_{0}^{\pi/4} = \frac{1}{2}\bigl[\sin(\tfrac{\pi}{2}) - \sin(0)\bigr] = \frac{1}{2}\times (1 - 0) = \frac{1}{2}.

2.2 第二个区间 [3π4,5π4][\tfrac{3\pi}{4},\, \tfrac{5\pi}{4}]

3π/45π/4cos(2θ)dθ=[12sin(2θ)]3π/45π/4.\int_{3\pi/4}^{5\pi/4} \cos(2\theta)\,d\theta = \left[\tfrac{1}{2} \sin(2\theta) \right]_{3\pi/4}^{5\pi/4}.
  • θ=3π4\theta=\tfrac{3\pi}{4} 时,2θ=3π22\theta = \tfrac{3\pi}{2}sin(3π2)=1\sin(\tfrac{3\pi}{2})=-1
  • θ=5π4\theta=\tfrac{5\pi}{4} 时,2θ=5π22\theta = \tfrac{5\pi}{2}sin(5π2)=sin(2π+π2)=1\sin(\tfrac{5\pi}{2})=\sin(2\pi+\tfrac{\pi}{2})=1

因此

3π/45π/4cos(2θ)dθ=12[1(1)]=12×2=1.\int_{3\pi/4}^{5\pi/4} \cos(2\theta)\,d\theta = \tfrac{1}{2}\bigl[\,1 - (-1)\bigr] = \frac{1}{2}\times 2 = 1.

2.3 总积分

将两部分结果相加:

0π/4cos(2θ)dθ  +  3π/45π/4cos(2θ)dθ=12+1=32.\int_{0}^{\pi/4} \cos(2\theta)\,d\theta \;+\; \int_{3\pi/4}^{5\pi/4} \cos(2\theta)\,d\theta = \frac{1}{2} + 1 = \frac{3}{2}.

最后乘上 a2a^2

Area=a2×32=32a2.\text{Area} = a^2 \times \frac{3}{2} = \frac{3}{2}\,a^2.

3. 最终答案

由 r2=2a2cos(2θ) 围成的区域面积为 3a22.\boxed{ \text{由 }r^2 = 2a^2\cos(2\theta)\text{ 围成的区域面积为 } \frac{3 a^2}{2}. }

Partager cette Q&R