Cambio de límites en integrales

Créé le : 11 janvier 2025

Répondu en utilisant OpenAI 01 par OpenAI01

Question

I've heard that if you change the integration interval from a to b to b to a, the result is the original value multiplied by -1. But what I don't understand is, isn't the area under the curve the same from a to b or b to a or eventually? One explanation is that it's because we integrate from the opposite side, so the length of the base of each bar is negative, but it doesn't seem very logical to me that since the order is simply reversed, the sign is also reversed. So my question is, since we proved the integral using the induction of the fundamental theorem of calculus, can we derive it exactly the same way? Or if there is another way, that's fine, but it has to be mathematically perfect.

Translated with DeepL.com (free version)

Réflexion

Examining integral limits

I’m considering how reversing integration limits negates the integral, shown through Riemann integral limits.

Deriving integrals

I’m piecing together the integral from a to b and its reverse, showing the inverse relationship. This approach ties into the fundamental theorem for clarity.

4초 동안 Thought about reversing integral limits

Réponse

Below is a common rigorous approach, first using the additivity property of integrals (which follows from the Fundamental Theorem of Calculus) and then connecting it to the sign change. I’ll outline two proofs—one that uses a very short “algebraic” argument once we trust a few fundamental properties of integrals, and one that uses a more “partition-based” argument that can be seen as a direct consequence of how Riemann sums work.


1) Short Algebraic/FTOC-Based Proof

We start from one of the most important properties of definite integrals:

Additivity of integrals: If a<b<ca < b < c, then

abf(x)dx+bcf(x)dx  =  acf(x)dx.\int_a^b f(x)\,dx + \int_b^c f(x)\,dx \;=\; \int_a^c f(x)\,dx.

Now observe what happens if in that property we set c=ac = a. We then have:

abf(x)dx  +  baf(x)dx  =  aaf(x)dx.\int_a^b f(x)\,dx \;+\; \int_b^a f(x)\,dx \;=\; \int_a^a f(x)\,dx.

But aaf(x)dx=0\int_a^a f(x)\,dx = 0 (the integral over an interval of zero length is zero). Hence,

abf(x)dx+baf(x)dx  =  0.\int_a^b f(x)\,dx + \int_b^a f(x)\,dx \;=\; 0.

Rearranging gives:

baf(x)dx  =  abf(x)dx.\int_b^a f(x)\,dx \;=\; -\,\int_a^b f(x)\,dx.

That’s it—we have shown algebraically that reversing the limits multiplies the integral by 1-1.


2) Partition/Riemann-Sum Argument

If we prefer something that looks closer to the definition via Riemann sums, we can argue as follows. Let P={x0,x1,,xn}P = \{x_0, x_1, \dots, x_n\} be a partition of the interval [a,b][a,b] where a=x0<x1<<xn=ba = x_0 < x_1 < \cdots < x_n = b. For a Riemann sum, we pick sample points ξi[xi1,xi]\xi_i \in [x_{i-1}, x_i] and form

SP  =  i=1nf(ξi)(xixi1).S_P \;=\; \sum_{i=1}^n f(\xi_i)\,\bigl(x_i - x_{i-1}\bigr).

As we refine the partition (nn \to \infty, mesh size 0\to 0), SPabf(x)dxS_P \to \int_a^b f(x)\,dx.

Now consider the interval [b,a][b,a] (i.e., “backwards”). A partition of [b,a][b,a] in the usual sense is {b=xn>xn1>>x0=a}\{b = x_n > x_{n-1} > \dots > x_0 = a\}. However, if you insist on always writing partitions in increasing order, you can view a partition of [b,a][b,a] simply by writing the same points in reverse:

P  =  {a=x0<x1<<xn=b},P' \;=\; \{a = x_0 < x_1 < \dots < x_n = b\},

but to traverse from bb down to aa, each sub-interval “goes backward.” Concretely,

  • The sub-interval from xnx_n down to xn1x_{n-1} has length (xn1xn)(x_{n-1} - x_n), which is negative since xn1<xnx_{n-1} < x_n.
  • Each term in the Riemann sum for ba\int_b^a effectively has a negative Δx\Delta x (because we are going from a larger number to a smaller number).

Hence, if you wrote the Riemann sum in the same left-to-right order but conceptually are “going backward,” each term in the sum would gain a factor of 1-1. In the limit, this negative factor persists:

baf(x)dx  =  limΔ0i=1nf(ηi)(xi1xi)  =  limΔ0i=1nf(ηi)(xixi1)  =  abf(x)dx.\int_b^a f(x)\,dx \;=\; \lim_{\|\Delta\|\to 0} \sum_{i=1}^n f(\eta_i)\,\bigl(x_{i-1} - x_i\bigr) \;=\; - \lim_{\|\Delta\|\to 0} \sum_{i=1}^n f(\eta_i)\,\bigl(x_i - x_{i-1}\bigr) \;=\; -\,\int_a^b f(x)\,dx.

This again shows, but now in a partition-based manner, that reversing the limits negates the integral.


Why “Area” Intuition is Tricky

Your question mentions being confused because “the area under the curve from aa to bb is the same as from bb to aa.” It’s true that geometrically, the region in the plane spanned by xx from aa to bb is the same as the region spanned by xx from bb to aa. However, in integral calculus, we attach an orientation or direction to the integral—so it’s more akin to signed area. Traversing an interval left-to-right is considered the positive direction, whereas right-to-left is negative.

In short, definite integrals are not purely “the area under a curve” in the everyday sense—they are signed. This sign convention is consistent with many deeper theorems in analysis and also underlies the idea that abf(x)dx=f(b)f(a)\int_a^b f'(x)\,dx = f(b)-f(a), which likewise changes sign if you swap aa and bb.


Summary

  1. Using additivity and the fact aaf(x)dx=0\int_a^a f(x)\,dx = 0, we get:

    abf(x)dx+baf(x)dx=0,\int_a^b f(x)\,dx + \int_b^a f(x)\,dx = 0,

    which directly implies

    baf(x)dx=abf(x)dx.\int_b^a f(x)\,dx = -\,\int_a^b f(x)\,dx.
  2. Using the definition via Riemann sums, one sees that reversing the interval introduces a negative increment (xi1xi)(x_{i-1}-x_i) instead of (xixi1)(x_i - x_{i-1}). This leads the limit to differ by an overall factor of 1-1.

These proofs show mathematically perfectly that reversing the limits of a definite integral multiplies its value by 1-1.

Question

아니.. 내 말은.. 더 근본적인 이유가 필요하다는 거야.. 왜 반대로 적분을 하면 밑변이 음수가 되는지? 왜냐면 어차피 우리의 목표는 막대기의 합을 구하는 것이니 그냥 밑변의 길이가 같다고 봐도 되는거 아니야? 내 말은, 왜 반대로 가면 부호가 반대가 되는지 더욱 더 근본적인 이유가 필요할 것 같아. 너가 한 답변은 그저 외우라는 느낌이야. 그리고 .. 적분을 왜 그렇게 정의한거야? 왜 단순히 x값과 x-1값의 차이의 절대값이 아닌 그저 차이를 사용해서 정의한거냐고.

Réflexion

Reversing integration limits

When reversing integration limits, the integral's sign changes, illustrating the concept of signed area and the significance of order in integrals.

Connecting integral concepts

Integrals, as limits of Riemann sums and differences of antiderivatives, involve orientation and signed measures, ensuring the fundamental theorem of calculus' unique conditions are met.

Emphasizing orientation

Integrals incorporate 'signed area' instead of absolute values to ensure consistent formulas for the fundamental theorem of calculus and indefinite integrals, highlighting the mathematical orientation integral to the concept.

Emphasizing orientation

It's interesting to see that defining integrals with absolute values eliminates orientation, undermining consistent calculus definitions and geometric links. Reversing order also disrupts these principles.

Emphasizing function orientation

Piecing together, the sign of (x_i - x_{i-1}) ensures consistent orientation, preserving the fundamental theorem of calculus and effectively measuring accumulation and direction in calculus and physics.

10초 동안 Thought about integral definition and orientation

Réponse

아래 설명은 “왜 적분을 정의할 때 구간 길이를 xixi1|x_i - x_{i-1}|로 안 쓰고 (xixi1)(x_i - x_{i-1})로 쓰는지”, 그리고 “왜 적분 구간을 뒤집으면 부호가 바뀌는지”를 조금 더 ‘근본적인’ 관점에서 다룹니다.


1) 적분은 ‘순수 면적’이 아니라 ‘방향(부호) 있는 누적량’을 다룬다

먼저 우리가 흔히 abf(x)dx\int_a^b f(x)\,dx를 “f(x)f(x)xx-축이 만드는 면적”이라고 부르기는 하지만, 사실 ‘적분’은 방향(Orientation)이 들어간 누적량으로 정의됩니다.

  • 구간 [a,b][a,b]를 오른쪽(증가 방향)으로 진행한다고 약속하면, ab\int_a^b는 ‘양(+)의 방향의 누적’이 되고,
  • [b,a][b,a]처럼 왼쪽(감소 방향)으로 진행하면, ‘음(-)의 방향의 누적’이 됩니다.

즉, 적분은 “단순 면적”이라기보다는 **“(방향성을 가진) 면적 또는 누적량”**으로 정의되어 있기 때문에, 구간을 뒤집으면 부호가 바뀌는 것은 ‘정의’ 차원에서 자연스럽습니다.

만약 ab\int_a^b를 “면적의 절댓값”처럼 정의했다면, ba\int_b^a를 해도 똑같은 (양수) 값이 나오겠죠. 그러나 그렇게 하면 아래에서 볼 ‘기본정리(미적분학의 기본정리)’ 같은 핵심 성질들이 깨져버립니다.


2) 미적분학의 기본정리와의 정합성

2.1 기본정리가 말하는 것

미적분학의 기본정리는

abf(x)dx  =  f(b)f(a)\int_a^b f'(x)\,dx \;=\; f(b) - f(a)

를 말합니다.

  • 만약 적분을 abxixi1f(ξi)\int_a^b |x_i - x_{i-1}|\cdot f(\xi_i) 같은 식으로 (절댓값을 취해서) 정의해 버리면,
  • 오른쪽에서 왼쪽으로 갈 때도 (부호 없이) 면적만 누적하게 되므로, f(b)f(a)f(b)-f(a) 같은 “양 끝점의 함수값 차이” 공식을 그대로 만족할 수가 없습니다.

즉, 적분 구간이 aba\to b인지 bab\to a인지에 따라 결과가 달라져야 기본정리에서 말하는

abf(x)dx=f(b)f(a),baf(x)dx=f(a)f(b)=(f(b)f(a))\int_a^b f'(x)\,dx = f(b)-f(a), \quad \int_b^a f'(x)\,dx = f(a)-f(b) = -(f(b)-f(a))

가 일관성 있게 유지됩니다.

2.2 F(b)F(a)F(b) - F(a)를 통해 보는 “구간 뒤집기”

기본정리에 의해, 어떤 F(x)=f(x)F'(x)=f(x)인 원시함수FF가 있을 때,

abf(x)dx  =  F(b)F(a).\int_a^b f(x)\,dx \;=\; F(b) - F(a).

그렇다면 baf(x)dx\int_b^a f(x)\,dx를 계산해 보면,

baf(x)dx=F(a)F(b)=[F(b)F(a)].\int_b^a f(x)\,dx = F(a) - F(b) = -\bigl[F(b) - F(a)\bigr].

여기서 보이듯이, 적분 구간을 뒤집으면 ab\int_a^b 값에 음(-)부호가 붙습니다.
이것이 적분을 “부호 있는 누적”으로 정의했을 때, 가장 깔끔하고 연속적으로 설명됩니다.


3) 왜 (xixi1)(x_i - x_{i-1})로 정의할까? (절댓값 말고)

3.1 ‘방향’ 개념을 살리기 위해

적분은 “누적”을 표현합니다. 그런데 누적에도 방향이 있습니다. 예를 들어 물리에서,

  • xx가 증가하는 방향(왼쪽에서 오른쪽)으로 힘을 가하면, 일을 양(+)으로 계산하고,
  • xx가 감소하는 방향(오른쪽에서 왼쪽)으로 힘을 가하면, 일을 음(-)으로 계산하죠.

이처럼 방향까지 표현하려면, 부분구간 길이를 xixi1|x_i - x_{i-1}|로 처리해버리면 안 되고, “(끝점 - 시작점)” 그대로 두어서 “양의 방향이냐, 음의 방향이냐”를 구분해야 합니다.

3.2 부분합(Riemann Sum)에서 보는 직관

리만합(Riemann sum)을 생각해봅시다.

i=1nf(ξi)[xixi1].\sum_{i=1}^n f(\xi_i)\,\bigl[x_i - x_{i-1}\bigr].
  • xi>xi1x_i > x_{i-1}이면 (xixi1)>0(x_i - x_{i-1}) > 0 이므로, ‘오른쪽 방향으로 간 구간’을 양의 기여로 누적.
  • xi<xi1x_i < x_{i-1}이면 (xixi1)<0(x_i - x_{i-1}) < 0 이므로, ‘왼쪽 방향으로 간 구간’을 음의 기여로 누적.

즉, 각각의 ‘미소(미세) 구간 Δx\Delta x’에 대해 방향성이 반영되어야 하고, 이것이 최종적인 적분의 부호를 결정합니다. 순수 면적만 누적하고 싶다면 절댓값을 씌우면 되지만, 그러면 “오른쪽에서 왼쪽으로 가는 과정”이 모두 그냥 양수로 합쳐져버려, 위에서 말한 물리적 관점이나 기본정리 관점이 다 깨져버리게 됩니다.


4) “왜 적분 구간을 바꾸면 부호가 반대가 되는가?”에 대한 좀 더 근본적인 요약

  1. 정의 자체가 ‘방향(Orientation)’이 포함된 누적량이기 때문

    • 적분은 면적을 ‘부호 있게’ 센다는 아이디어에서 출발한다.
    • (xixi1)(x_i - x_{i-1})가 양수면 오른쪽 이동(+) 기여, 음수면 왼쪽 이동(-) 기여로 계산.
  2. 미적분학의 기본정리와 일관성을 맞추기 위해

    • abf(x)dx=f(b)f(a)\int_a^b f'(x)\,dx = f(b)-f(a)라는 공식이 자연스럽게 유지되려면,
    • ba\int_b^a를 했을 때 ab\int_a^b의 ‘음수 버전’이 되어야 한다.
  3. 절댓값으로 정의하면, 이 모든 성질이 망가진다

    • 절댓값을 쓰면 “면적”만 나오므로, 방향성이 사라지고, f(b)f(a)f(b)-f(a)와의 직접적 연결(기본정리)도 깨진다.

정리하자면, 적분은 “왼쪽에서 오른쪽으로 (또는 작은 xx에서 큰 xx로) 갈 때”를 **‘기준’**으로 하여 양(+) 방향으로 삼고, 그 반대로 갈 때는 음(-) 방향으로 잡는 **“부호가 있는 누적량”**으로 정의됩니다.
이 방식으로 정의해야 미분과 적분이 서로 딱 들어맞고, 우리가 원하는 (물리, 공학, 수학) 이론이 깔끔하게 돌아갑니다.


결론

  • “적분” = “(방향이 있는) 면적 누적”으로 정의
  • 구간 뒤집기 → 방향 뒤집기 → 부호 반전
  • 이는 면적 자체를 ‘그냥 양수로만 모으는 것’과 달리, 방향 정보를 포함하기 위해 그렇게 정의한 것.
  • 덕분에 미적분학의 기본정리를 비롯한 여러 중요한 성질이 성립.

이 모든 것이 **“왜 적분을 그렇게(방향을 살려) 정의하느냐?”**에 대한 가장 근본적인 이유입니다.
“방향이 붙어야 미분과 적분이 서로 맞물린다.”라고 이해하시면 좋겠습니다.

Question

I mean. I mean, we need a more fundamental reason why the inverse integral gives us a negative base, because our goal is to find the sum of the sticks anyway, so why not just assume that the bases are the same length? I mean, we need a more fundamental reason why the sign is reversed when we do the inverse. Your answer feels like it's just memorization, for example (it is just example) we derived it using S(x)function when proving fundamental theory of calculus . right? you can use it for proving this.

Réflexion

Investigating the negative sign

I’m working through the concept of the negative sign when reversing integration bounds, emphasizing the fundamental theorem of calculus and its antiderivative.

Understanding net change

I'm thinking through how integrating from aa to bb and reversing the bounds results in a negative integral. This negative sign aligns with the net change's orientation.

Mapping orientation

I’m examining how reversing integration bounds aligns with the orientation of net change, comparing it to summing areas of vertical rectangles from left to right. This helps clarify the concept further.

Recognizing the sign flip

Reversing integration bounds gives a negative result, aligning with the orientation of net change. This negative sign is a fundamental consequence of the integral's orientation.

Connecting orientation

Reversing integration bounds consistently alters the sign, as it aligns with the net change's orientation. This principle aligns with the fundamental theorem of calculus.

18초 동안 Thought about integral sign reversal

Réponse

Below is a more “from first principles” explanation of why reversing the limits of integration introduces a minus sign, but without just saying “memorize it.” We will use the idea of constructing a function S(x)S(x) (which will turn out to be an antiderivative of ff) and see how its values naturally give us the integral from one point to another. From that construction, we will see very explicitly why swapping the endpoints reverses the sign.


1. Defining S(x)S(x) and Connecting It to \int

Let’s define a function S(x)S(x) by picking some fixed point cc (think of it as a “reference point”), and then writing

S(x)  =  cxf(t)dt.S(x) \;=\; \int_{c}^{\,x} f(t)\,dt.

This means: S(x)S(x) is the “accumulated area” (with sign!) of ff as tt goes from cc up to xx.

  1. If x>cx > c, the integral cxf(t)dt\int_c^x f(t)\,dt accumulates “positive area” (or negative, if ff dips below the axis, but the direction is cxc \to x).
  2. If x<cx < c, then cxf(t)dt\int_c^x f(t)\,dt accumulates “area” in the reverse\textit{reverse} direction, and so S(x)S(x) might be negative relative to S(c)S(c).

In any case, S(x)S(x) is well-defined once ff is integrable.


2. The Fundamental Theorem of Calculus in Terms of S(x)S(x)

A key result (the Fundamental Theorem of Calculus, Part 1) says that if ff is continuous, then S(x)=f(x)S'(x) = f(x). In other words:

ddx(cxf(t)dt)  =  f(x).\frac{d}{dx} \Bigl(\int_c^x f(t)\,dt\Bigr) \;=\; f(x).

This theorem is profound because it links differentiation and integration. But more importantly for our question, it tells us:

abf(x)dx=S(b)S(a)\int_a^b f(x)\,dx = S(b) - S(a),
since abf(x)dx\int_a^b f(x)\,dx can be written as cbf(t)dtcaf(t)dt=S(b)S(a).\int_c^b f(t)\,dt - \int_c^a f(t)\,dt = S(b) - S(a).

Hence, we identify abf(x)dx=S(b)S(a)\int_a^b f(x)\,dx = S(b) - S(a).


3. What Happens If We Swap aa and bb?

Now let’s look at baf(x)dx\int_b^a f(x)\,dx. By exactly the same reasoning,

baf(x)dx  =  S(a)    S(b).\int_b^a f(x)\,dx \;=\; S(a) \;-\; S(b).

But notice:

S(a)S(b)  =  [S(b)S(a)].S(a) - S(b) \;=\; -\bigl[S(b) - S(a)\bigr].

Since S(b)S(a)=abf(x)dxS(b) - S(a) = \int_a^b f(x)\,dx, we immediately see

baf(x)dx=abf(x)dx.\int_b^a f(x)\,dx = -\,\int_a^b f(x)\,dx.

That’s it: the minus sign emerges directly from the fact that abf(x)dx=S(b)S(a)\int_a^b f(x)\,dx = S(b) - S(a), so switching aa and bb gives S(a)S(b)S(a) - S(b). This is a purely algebraic consequence once we define S(x)S(x) that way.


4. Why Not Just “Sum the Sticks” in Either Order?

You asked: “Aren’t we just summing little rectangle areas (Riemann sums)? Why does summing them from right to left flip the sign?”

4.1 Riemann sums are oriented sums

When we define a Riemann sum on [a,b][a,b]:

i=1nf(ξi)(xixi1),\sum_{i=1}^n f(\xi_i)\,\bigl(x_i - x_{i-1}\bigr),

we do not take the absolute value xixi1\bigl|x_i - x_{i-1}\bigr|. Instead, we literally use (xixi1)(x_i - x_{i-1}). If xi>xi1x_i > x_{i-1}, that difference is positive and contributes positively; if we were to swap the order and go from bb to aa, each little piece becomes (xi1xi)(x_{i-1} - x_i), which is negative of (xixi1)(x_i - x_{i-1}).

Thus, when we sum up from right to left (that is, if the partition is traversed in decreasing order), each sub-interval’s width is negative, and so the total sum becomes the negative of what it was when going left to right.

4.2 “But why define it that way?”

Because we want consistency with the Fundamental Theorem of Calculus. That theorem yields

abf(x)dx  =  f(b)f(a).\int_a^b f'(x)\,dx \;=\; f(b) - f(a).

If we had defined the integral using absolute values of widths, then baf(x)dx\int_b^a f'(x)\,dx would no longer come out to f(a)f(b)f(a) - f(b). We would lose the beautiful statement that abf(x)dx\int_a^b f'(x)\,dx is exactly the net change f(b)f(a)f(b)-f(a).

Put differently, to match the idea of “net change” (rather than “absolute accumulation”), we need the orientation to matter. And that orientation is exactly why Δxi=(xixi1)\Delta x_i = (x_i - x_{i-1}) instead of xixi1\lvert x_i - x_{i-1}\rvert.


5. Geometric vs. Algebraic/Net-Change View

5.1 Geometric interpretation

  • Sometimes we say “abf(x)dx\int_a^b f(x)\,dx is the signed area under ff.”
  • “Signed” here means that if we move left-to-right, that area is taken as positive if ff is above the xx-axis, negative if ff is below, and if we literally reverse the direction (i.e., go from bb down to aa), the entire orientation of that shape is reversed, hence the sign flips.

5.2 Algebraic/Net-change interpretation

  • abf(x)dx\int_a^b f(x)\,dx is the “net change” of the antiderivative FF of ff, because F(x)=f(x)F'(x) = f(x).
  • That net change is F(b)F(a)F(b) - F(a). Reversing the interval naturally becomes F(a)F(b)F(a) - F(b), i.e. the negative.

Either viewpoint leads us to the same conclusion that reversing endpoints introduces a minus sign. This is not a random convention—it is forced if we want the integral to measure net change in a consistent way with derivatives.


6. Summary

  1. We define a function S(x)=cxf(t)dtS(x) = \int_{c}^x f(t)\,dt.
  2. Fundamental Theorem of Calculus says S(x)=f(x)S'(x) = f(x).
  3. The definite integral abf(x)dx\int_a^b f(x)\,dx is then S(b)S(a)S(b) - S(a).
  4. If we flip aa and bb, we get S(a)S(b)S(a) - S(b), which is exactly the negative.

This derivation shows that the minus sign is not arbitrary nor something to “just memorize.” It is an inevitable outcome of how S(x)S(x) is constructed to be an antiderivative of ff, combined with the fundamental theorem linking integrals and derivatives. We do not use absolute differences in the Riemann sum because that would break the key property that abf(x)dx=f(b)f(a)\int_a^b f'(x)\,dx = f(b)-f(a).

Hence, the most fundamental reason is that the integral represents net (oriented) change rather than just “the size of stacked rectangles.” That orientation is built in mathematically through the difference (xixi1)(x_i - x_{i-1}), and it precisely explains why reversing the limits of integration introduces a minus sign.

Partager cette Q&R