甲乙丙步行问题

Créé le : 8 décembre 2024

Répondu en utilisant O1 par Chat01

Question

甲、乙两人从相距490米的A、B两地同时步行出发,相向而行,丙与甲
同时从A地出发,在甲、乙二人之间来回跑步(遇到乙立即返回,遇到甲
也立即返回):已知丙每分钟跑240米,甲每分钟走40米,当丙第一次折
返回来并与甲相遇时,甲、乙二人相距210米,那么乙每分钟走多少
米?甲下一次遇到丙时,甲、乙相距多少米?

Réflexion

Piecing together the journey

Jia and Yi start walking towards each other from their respective locations, while Bing runs back and forth between them, changing direction upon meeting either Jia or Yi.

Figuring out Yi's speed

Now that Bing meets Jia, Yi's distance is 210 meters. Knowing Bing's speed and Jia's, I need to calculate Yi's walking speed.

Pinpointing Yi's speed

Interestingly enough, we know the distance between Jia and Yi is 210 meters when Bing meets Jia for the second time. Using Bing's speed, I can determine Yi's walking speed.

Charting Bing's path

Starting from A, Bing races towards Yi. I’m curious about their first intersection by equating their positions and solving for the unknown Yi's speed.

Calculating Bing's return

I’m working out when Bing will meet Jia a second time by equating Bing's new position with Jia's during Bing's return journey. This helps pinpoint the intersection.

Analyzing Bing and Jia's second reunion

I’m detailing Bing's movement towards Jia after their first meeting, carefully ensuring Jia's advancing position is included to pinpoint their intersection.

Pinpointing the second meeting

I’ve worked out that Bing and Jia will meet again at 127\frac{12}{7} T0T_0 when the distance between Jia and Yi is 210 meters.

Calculating the distance

OK, I’m working out the distance between Jia and Yi when Bing meets Jia for the second time, setting it to 210 meters and substituting T0 to find Yi's speed.

Figuring out Yi's speed

I’ve worked out Yi's walking speed by simplifying equations, combining terms, and performing addition and division. Yi's speed is 60 m/min.

Clarifying the distance

I’ve confirmed that Yi walks 60 m/min. To determine the distance between Jia and Yi at their next meeting, I’ll calculate based on their respective speeds and the elapsed time.

Clarifying the pattern

OK, let's map out Bing's movements: he reverses direction at each meeting with Jia. This involves calculating distances covered and timing the next encounter after the second meeting.

Revisiting the pattern

After Bing's second meeting with Jia, he heads back to Yi, then returns to Jia for the third meeting, repeating this cycle. I’m curious about the distance between Jia and Yi at this point.

Tracking the pattern

By Bing's third meeting with Jia, I’m piecing together the sequence and distances, considering their speeds and timing for the next encounter after the second meeting.

Confirming coordinates

I’m verifying Bing and Jia's second meeting by recalculating their positions at t0=2.8t_0 = 2.8 minutes. This ensures accuracy and confirms the 210-meter distance.

Tracing Bing's route

I’m calculating Bing's movement back towards Yi's position, ensuring he travels 280 meters backward. This leads to pinpointing the third meeting of Jia and Bing.

Ensuring accuracy

I’m aligning with the problem statement to correctly identify the next Jia-Bing meeting after the second Jia-Yi meeting, noting Bing's back-and-forth movements. This clarifies their next intersection.

Analyzing intersections

Let's clarify Bing and Jia's meetings: Bing meets Yi first, then returns to Jia, marking their initial reunion. This clarifies their meeting sequence after Bing's return.

Tracking the sequence

I'm labeling Bing and Jia's encounters: initial condition, first Bing-Yi meeting, first Bing-Jia meeting, second Bing-Yi meeting, and second Bing-Jia meeting. The question asks about their fifth event.

Tracking Bing and Yi

I’m following Bing's path towards Yi while noting Jia's position moves. The second Bing-Yi meeting shows both at 280 meters, with Yi heading in reverse.

Tracking movements

I’ve pinpointed Bing's journey back to Jia, meeting in 4 minutes. They’re 90 meters apart by the fifth encounter, with Yi heading towards the origin and Jia continuing forward.

Thought about relative motion and speed,持续 1m 19s

Réponse

分析过程:

设:

  • A、B两地间距为 490 米。
  • 甲从 A 出发(记 A 点为 0 米处),乙从 B 出发(记 B 点为 490 米处),二人同时相向而行。
  • 丙与甲同时从 A 出发,丙在甲、乙之间不停来回奔跑:遇到乙即刻转身向甲跑,遇到甲即刻转身向乙跑,速度不变。
  • 已知丙的速度为 240 米/分,甲的速度为 40 米/分。
  • 当丙第一次跑到乙处后立刻折返,并在返回途中与甲相遇时,此刻甲、乙两人之间的距离为 210 米。

要求:
(1) 求乙的速度(记为 v_乙)。
(2) 当甲下一次遇到丙时,甲、乙之间相距多少米?

步骤详解:

  1. 定义符号和初始条件:

    • 初始时刻 t=0:
      甲在 0 米处,向右(B方向)以 40 米/分行走。
      乙在 490 米处,向左(A方向)以 v_乙 米/分行走(v_乙未知)。
      丙在 0 米处,以 240 米/分向右跑。

    因为甲、乙相向而行,甲的位置随时间 t 为:
    x(t)=40tx_{甲}(t) = 40t

    乙的位置为:
    x(t)=490vtx_{乙}(t) = 490 - v_{乙} t

    丙第一次出发时,向右奔向乙,位置为:
    x(t)=240tx_{丙}(t) = 240t(第一个往右阶段)

  2. 求丙第一次与乙相遇的时间 T0:
    丙、乙相遇时 x(T0)=x(T0)x_{丙}(T_0) = x_{乙}(T_0),故:

    240T0=490vT0240T_0 = 490 - v_{乙}T_0 240T0+vT0=490240T_0 + v_{乙}T_0 = 490 T0(240+v)=490T_0(240 + v_{乙}) = 490 T0=490240+vT_0 = \frac{490}{240 + v_{乙}}

    此时相遇点位置为:
    x相遇1=240T0x_{相遇1} = 240T_0

  3. 丙第一次遇乙后调头返回遇甲的时间:
    丙在 T_0 时刻与乙相遇后,立刻向左(回甲方向)跑,速度仍为 240 米/分。

    t>T0t > T_0 时刻,设 Δt=tT0\Delta t = t - T_0。此时丙的位置为:
    x(t)=x相遇1240Δt=240T0240(tT0)x_{丙}(t) = x_{相遇1} - 240\Delta t = 240T_0 - 240(t - T_0)

    甲的位置始终为:
    x(t)=40tx_{甲}(t) = 40t

    丙与甲再次相遇(第一次折返后与甲相遇)时,有

    40t=240T0240(tT0)40t = 240T_0 - 240(t - T_0)

    展开:

    40t=240T0240t+240T040t = 240T_0 - 240t + 240T_0 40t=480T0240t40t = 480T_0 - 240t 40t+240t=480T040t + 240t = 480T_0 280t=480T0280t = 480T_0 t=480280T0=127T0t = \frac{480}{280}T_0 = \frac{12}{7}T_0

    我们记此相遇时间为 t2=127T0t_2 = \frac{12}{7}T_0

  4. 已知此时甲、乙相距210米,建立方程求 v_乙:
    t=t2=127T0t = t_2 = \frac{12}{7}T_0 时,
    甲的位置:

    x(t2)=40t2=40127T0=4807T0x_{甲}(t_2) = 40t_2 = 40 \cdot \frac{12}{7}T_0 = \frac{480}{7}T_0

    乙的位置:

    x(t2)=490vt2=490v127T0x_{乙}(t_2) = 490 - v_{乙}t_2 = 490 - v_{乙}\cdot\frac{12}{7}T_0

    两者距离为210米:

    x(t2)x(t2)=210x_{乙}(t_2) - x_{甲}(t_2) = 210

    即:

    (490v127T0)4807T0=210(490 - v_{乙}\cdot\frac{12}{7}T_0) - \frac{480}{7}T_0 = 210

    T0=490240+vT_0 = \frac{490}{240 + v_{乙}} 代入:

    490127v490240+v4807490240+v=210490 - \frac{12}{7}v_{乙} \cdot \frac{490}{240 + v_{乙}} - \frac{480}{7}\cdot\frac{490}{240 + v_{乙}} = 210

    合并分母 (240+v)(240+v_{乙}) 和因子 17\frac{1}{7}
    首先提取 490240+v\frac{490}{240 + v_{乙}} 公因子:

    490490240+v(127v+4807)=210490 - \frac{490}{240 + v_{乙}}\left(\frac{12}{7}v_{乙} + \frac{480}{7}\right) = 210

    127v+4807=12v+4807\frac{12}{7}v_{乙} + \frac{480}{7} = \frac{12v_{乙} + 480}{7}

    故:

    490490240+v12v+4807=210490 - \frac{490}{240 + v_{乙}}\cdot\frac{12v_{乙}+480}{7} = 210

    将 210 移到左侧:

    490210=490240+v12v+4807490 - 210 = \frac{490}{240 + v_{乙}}\cdot\frac{12v_{乙}+480}{7} 280=490(12v+480)7(240+v)280 = \frac{490(12v_{乙}+480)}{7(240 + v_{乙})} 2807(240+v)=490(12v+480)280 \cdot 7(240 + v_{乙}) = 490(12v_{乙}+480)

    左侧:

    1960(240+v)=490(12v+480)1960(240 + v_{乙}) = 490(12v_{乙}+480)

    展开右侧:

    1960240+1960v=49012v+4904801960 \cdot 240 + 1960 v_{乙} = 490 \cdot 12v_{乙} + 490 \cdot 480

    计算常数:
    1960240=4704001960 \cdot 240 = 470400
    490480=235200490 \cdot 480 = 235200

    方程变为:

    470400+1960v=5880v+235200470400 + 1960 v_{乙} = 5880 v_{乙} + 235200

    移项:

    470400235200=5880v1960v470400 - 235200 = 5880v_{乙} - 1960v_{乙} 235200=3920v235200 = 3920v_{乙} v=2352003920=60米/分v_{乙} = \frac{235200}{3920} = 60 \text{米/分}

    得出乙的速度为 60 米/分。

  5. 乙的速度已知(60米/分),验证时间点:
    v=60v_{乙}=60 后,

    T0=490240+60=490300=49301.6333T_0 = \frac{490}{240+60} = \frac{490}{300} = \frac{49}{30} \approx 1.6333 \text{分}

    t2=127T0=1274930=588210=2.8t_2 = \frac{12}{7}T_0 = \frac{12}{7}\cdot \frac{49}{30} = \frac{588}{210} = 2.8 \text{分}
    甲位置:40×2.8=11240 \times 2.8 = 112
    乙位置:49060×2.8=490168=322490 - 60 \times 2.8 = 490 -168 = 322
    相距:322 -112=210米,与题意吻合。

    第一问答案:乙每分钟走 60 米。

  6. 求甲下一次遇到丙时,甲、乙相距多少米?

    已知在 t=2.8 分时丙又在甲处(112米处)。接下来丙向乙方向跑。

    • 丙从112米处向右跑,速度240米/分。

    • 找丙下一次遇乙的时间(记为 t_3):

      丙位置:x(t)=112+240(t2.8)x_{丙}(t)=112+240(t-2.8)
      乙位置:x(t)=49060tx_{乙}(t)=490-60t

      相遇条件:

      112+240(t2.8)=49060t112 + 240(t-2.8) = 490 -60 t 240t672+112=49060t240t -672 +112 =490 -60 t 240t560=49060t240t -560=490 -60 t 240t+60t=490+560240t +60 t=490+560 300t=1050300t=1050 t=3.5t=3.5 \text{分}

      此时丙、乙相遇点为:
      x(3.5)=49060×3.5=490210=280x_{乙}(3.5)=490 -60 \times 3.5=490-210=280
      丙位置也 280米;甲位置:x(3.5)=40×3.5=140x_{甲}(3.5)=40\times3.5=140
      此时甲、乙距离为 280-140=140米。

      丙再次折返,往甲方向跑。

    • 求丙再遇甲的时间(记为 t_4):

      此时 t=3.5 分,丙在280米处向左跑(240米/分向甲方向),甲仍向右走。
      丙位置:x(t)=280240(t3.5)x_{丙}(t)=280 -240(t-3.5)
      甲位置:x(t)=40tx_{甲}(t)=40t

      相遇条件:

      40t=280240(t3.5)40t=280 -240(t-3.5) 40t=280240t+84040t=280 -240t+840 40t=1120240t40t=1120 -240t 40t+240t=112040t+240t=1120 280t=1120280t=1120 t=4.0t=4.0 \text{分}

      在 t=4.0 分时: 甲位置:x(4)=40×4=160x_{甲}(4)=40 \times 4=160
      乙位置:x(4)=49060×4=490240=250x_{乙}(4)=490 -60 \times 4=490 -240=250
      甲、乙距离=250-160=90米。

      即甲下一次遇到丙时,甲、乙相距 90 米。

最终答案:
乙的速度为 60米/分,甲下一次遇到丙时,甲、乙相距 90米

Partager cette Q&R