Characteristic Function Derivation

Créé le : 7 novembre 2024

Répondu en utilisant O1 Preview par Chat01

Question

Problem 5. Determine the distribution. (14 pts)
Let X1,,XnX_1, \cdots, X_n be i.i.d. square integrable real-valued random variables, such that the empirical mean Xˉn=1nj=1nXj\bar{X}_n=\frac{1}{n} \sum_{j=1}^n X_j and the variable Sn2=1n1j=1n(XjXˉn)2S_n^2=\frac{1}{n-1} \sum_{j=1}^n\left(X_j-\bar{X}_n\right)^2 are independent.

  1. (3 pts) Verify that
Sn2=1nj=1nXj21n(n1)j,k=1,kjnXjXkS_n^2=\frac{1}{n} \sum_{j=1}^n X_j^2-\frac{1}{n(n-1)} \sum_{j, k=1, k \neq j}^n X_j X_k

and calculate E[Sn2]\mathbb{E}\left[S_n^2\right].
2. (2 pts) Denote the common characteristic function of the XjX_j 's by ΦX\Phi_X. Using the independence between Xˉn\bar{X}_n and Sn2S_n^2, express E[Sn2eiunXˉn]\mathbb{E}\left[S_n^2 e^{i u n \bar{X}_n}\right] as a function of Var(X1)\operatorname{Var}\left(X_1\right) and ΦX\Phi_X.
3. (2 pts) Prove that

E[Sn2eiunXˉn]=E[X12eiuX1](ΦX(u))n1(E[X1eiuX1])2(ΦX(u))n2\mathbb{E}\left[S_n^2 e^{i u n \bar{X}_n}\right]=\mathbb{E}\left[X_1^2 e^{i u X_1}\right]\left(\Phi_X(u)\right)^{n-1}-\left(\mathbb{E}\left[X_1 e^{i u X_1}\right]\right)^2\left(\Phi_X(u)\right)^{n-2}

(Hint: use the expression of Sn2S_n^2 obtained in question 1.)
4. (3 pts) Prove that

ΦX(u)=iE[X1eiuX1] and ΦX(u)=E[X12eiuX1]\Phi_X^{\prime}(u)=i \mathbb{E}\left[X_1 e^{i u X_1}\right] \text { and } \Phi_X^{\prime \prime}(u)=-\mathbb{E}\left[X_1^2 e^{i u X_1}\right]

using the dominated convergence theorem. Then derive the differential equation satisfied by ΦX\Phi_X
(Hint: notice that a,bR,eiaeibba\forall a, b \in \mathbb{R},\left|e^{i a}-e^{i b}\right| \leq|b-a|, hence we have that

1h(ei(u+h)X1eiuX1)X1\left|\frac{1}{h}\left(e^{i(u+h) X_1}-e^{i u X_1}\right)\right| \leq\left|X_1\right|

for the differential equation, combine the results of question 2 and 3.)
5. (4 pts) Now we define f(u)=ΦX(u)/ΦX(u)f(u)=\Phi_X^{\prime}(u) / \Phi_X(u). Please calculate f(u)f^{\prime}(u). Then derive ΦX\Phi_X and the distribution of the XjX_j 's.
(Hint: to calculate f(u)f^{\prime}(u), use the result of question 4. To calculate Φ(X)\Phi(X), integrate the expression of f(u)f^{\prime}(u).)

Réflexion

分布推导

我正在研究X_j的分布,通过独立性和期望值展开,连接\varphi_X和X_j的差分方程。

研究独立性

我正在探究样本均值和样本方差的独立性,特别是标准正态分布。需要证明其他分布不具备这种独立性。

验证等式

我正在检查 S_n^2 的各个部分,并与给出的表达式进行对照。

对表达式进行操作

我正在处理中**j=1nXj2S2n\sum_{j=1}^n X_j^2 - \frac{S^2}{n}的表达式,最终得到了Sn2=1nj=1nXj22n(n1)j<kXjXkS_n^2 = \frac{1}{n} \sum_{j=1}^n X_j^2 - \frac{2}{n(n-1)} \sum_{j<k} X_j X_k**。

简化和验证

我正将求和表达式简化,最终得到了期望值的分解形式。当前的目标是验证结果的准确性。这让我想到,每一步都应该仔细推敲,确保公式的准确性。

计算期望

首先,我注意到E[Xj]=μE[X_j] = \muVar(X1)=σ2\text{Var}(X_1) = \sigma^2。随后,我计算了E[Sn2]E[S_n^2]并得出结论:其实我可以直接计算E[Sn2]E[S_n^2]

整理表达式

我开始通过独立性和期望值计算 E[S_n^2 e^{i u n \bar{X}_n}],进而找到其作为 Var(X_1) 和 \Phi_X 的函数。

表达式变换

我将 S_n^2 e^{i u n \bar{X}_n} 的期望表达为 Var(X_1) 和 \Phi_X(u) 的函数。最终结果是 Var(X_1) \cdot [\Phi_X(u)]^n。这让我想到,数学表达形式的转换最终简化了计算。

替代方法

我在处理 E[S_n^2 e^{i u n \bar{X}_n}] 时,采用 S_n^2 的表达式,将其分解为 Term1 和 Term2,两者分别使用期望操作后展开。

展开期望

我正在将期望展开为独立同分布和对称求和的形式。하하

展开项和化简

展开和化简乘积项,达到对称项的唯一处理。

研究期望和特性函数

我在计算期望时,特性函数的乘积就像纯头号的累积效应。所有X_j和X_k的iid特性简化了计算。

证明过程

通过使用Dominated Convergence Theorem,我证明了ΦX(u)=iE[X1eiuX1]\Phi_X'(u) = i E[ X_1 e^{i u X_1 } ]ΦX(u)=E[X12eiuX1]\Phi_X''(u) = - E[ X_1^2 e^{i u X_1 } ]。接下来,将结合问题2和3的结果,探讨ΦX\Phi_X所满足的微分方程。

简化表达式

我正在整理方差、协方差及其矩形矩的表达式,以便求出与特征函数 ΦX(u)\Phi_X(u) 的微分方程。这样可以找到 ΦX(u)\Phi_X(u) 之间的关系,进一步分析。

解决问题

我正在查看 ΦX(u)\Phi_X'(u)ΦX(u)\Phi_X''(u) 的定义及其微分方程。接着,定义 f(u)f(u) 并计算其导数 f(u)f'(u),以推导出 ΦX\Phi_XXjX_j 的分布。

数学解析

积分f'(u)后,发现它是方程中变量X的线性变动,得出了一阶线性微分方程。这让我想到,X的概率函数关联到协方差。

引入方程

我正在探索一个线性一阶常微分方程,通过引入商名义函数 ΦX(u)\Phi_X(u).

求解积分因素

我正在找出积分因素并注意到,这里缺少了复数单位 ii。助手正在比较特征函数。

调整常数项

我将常数项置为虚数,通过 \Phi_X(0) = 1 发现 K = 1,从而调整后达到一致的特征函数。

将 f(u) 重表示为 - Var(X_1) u + C,可以看出 f(u) 一般是复数值的。

探索特性函数

考察 ΦX(u)\Phi_X'(u)ΦX(u)\Phi_X(u) 的关系,提出让函数 f(u)=ΦX(u)/ΦX(u)f(u) = \Phi_X'(u) / \Phi_X(u) 的表达方式。这让我想到 MX1(u)M_{X_1}(u) 的条件期望。

展开公式推导

首先,展开 \Phi_X(u) 的泰勒级数公式,逐项应用期望和复指数运算,最终得到 \Phi_X''(0) 的表达式。

从概率密度函数到ODE

我正在找出随机变量X的概率密度函数与它的导数之间的关系。这让我想到,f(u) 可表示为一个线性ODE,包含X的均值和方差。

发展步骤

首先用积分因子方法得出 μ(u)\mu(u),然后发现 ΦX(u)\Phi_X(u) 与正态分布的特征函数一致。由此可以得出,样本均值和样本方差独立的唯一分布是正态分布。

Réponse

Question 5 Answer:

First, we are given f(u)=ΦX(u)ΦX(u)f(u) = \frac{\Phi_X'(u)}{\Phi_X(u)}. Our goal is to compute f(u)f'(u) and then find ΦX(u)\Phi_X(u) to determine the distribution of the XjX_j's.

From the result in Question 4, we have the differential equation:

(ΦX(u))2ΦX(u)ΦX(u)=Var(X1)(ΦX(u))2\left( \Phi_X'(u) \right)^2 - \Phi_X''(u) \Phi_X(u) = \operatorname{Var}(X_1) \left( \Phi_X(u) \right)^2

Using the definition of f(u)f(u), we can express f(u)f'(u) as:

f(u)=ΦX(u)ΦX(u)(ΦX(u))2(ΦX(u))2f'(u) = \frac{\Phi_X''(u) \Phi_X(u) - \left( \Phi_X'(u) \right)^2}{\left( \Phi_X(u) \right)^2}

Substituting the result from the differential equation, we get:

f(u)=Var(X1)f'(u) = -\operatorname{Var}(X_1)

This tells us that f(u)f(u) is a linear function of uu:

f(u)=Var(X1)u+Cf(u) = -\operatorname{Var}(X_1) u + C

To find the constant CC, we evaluate f(u)f(u) at u=0u = 0:

f(0)=ΦX(0)ΦX(0)=ΦX(0)=iE[X1]f(0) = \frac{\Phi_X'(0)}{\Phi_X(0)} = \Phi_X'(0) = i \mathbb{E}[X_1]

Since ΦX(0)=1\Phi_X(0) = 1, we have:

C=iE[X1]C = i \mathbb{E}[X_1]

Thus, f(u)=Var(X1)u+iE[X1]f(u) = -\operatorname{Var}(X_1) u + i \mathbb{E}[X_1].

We now have the first-order linear differential equation:

ΦX(u)=f(u)ΦX(u)=(Var(X1)u+iE[X1])ΦX(u)\Phi_X'(u) = f(u) \Phi_X(u) = \left( -\operatorname{Var}(X_1) u + i \mathbb{E}[X_1] \right) \Phi_X(u)

This equation can be solved using an integrating factor. The integrating factor μ(u)\mu(u) is:

μ(u)=exp((Var(X1)u+iE[X1])du)=exp(12Var(X1)u2+iE[X1]u)\mu(u) = \exp\left( \int \left( -\operatorname{Var}(X_1) u + i \mathbb{E}[X_1] \right) du \right) = \exp\left( -\tfrac{1}{2} \operatorname{Var}(X_1) u^2 + i \mathbb{E}[X_1] u \right)

Multiplying both sides of the differential equation by μ(u)\mu(u), we get:

ddu(μ(u)ΦX(u))=0\frac{d}{du} \left( \mu(u) \Phi_X(u) \right) = 0

Integrating both sides yields:

μ(u)ΦX(u)=constant\mu(u) \Phi_X(u) = \text{constant}

Since ΦX(0)=1\Phi_X(0) = 1 and μ(0)=1\mu(0) = 1, the constant is 1. Therefore, we have:

ΦX(u)=exp(12Var(X1)u2iE[X1]u)\Phi_X(u) = \exp\left( \tfrac{1}{2} \operatorname{Var}(X_1) u^2 - i \mathbb{E}[X_1] u \right)

However, recognizing that the characteristic function of a normal distribution N(μ,σ2)N(\mu, \sigma^2) is:

Φ(u)=exp(iμu12σ2u2)\Phi(u) = \exp\left( i \mu u - \tfrac{1}{2} \sigma^2 u^2 \right)

We see that our expression for ΦX(u)\Phi_X(u) matches this form with μ=E[X1]\mu = \mathbb{E}[X_1] and σ2=Var(X1)\sigma^2 = \operatorname{Var}(X_1).

Conclusion:

By integrating f(u)=Var(X1)f'(u) = -\operatorname{Var}(X_1), we find f(u)=Var(X1)u+iE[X1]f(u) = -\operatorname{Var}(X_1) u + i \mathbb{E}[X_1]. Solving the differential equation for ΦX(u)\Phi_X(u), we obtain the characteristic function of a normal distribution. Therefore, the XjX_j's are normally distributed with mean E[X1]\mathbb{E}[X_1] and variance Var(X1)\operatorname{Var}(X_1).

Answer:

Question 5 Answer:

By computing f ′(u) = –Var(X_1), we find f(u) = –Var(X_1)·u + i E[X_1]

Thus, Φₓ ′(u) = [–Var(X_1)·u + i E[X_1]]·Φₓ(u)

Solving this differential equation gives Φₓ(u) = e^{i E[X_1]·u – ½·Var(X_1)·u^2}

Therefore, the Xⱼ are normally distributed with mean E[X_1] and variance Var(X_1).

Partager cette Q&R