Cu的自旋扩散长度大概是多少?(不同生长情况下都列出来)

Creado el: 11 de febrero de 2026

Respondido usando GPT-5.2 Thinking por Chat01

Pregunta

Cu的自旋扩散长度大概是多少?(不同生长情况下都列出来)

Pensamiento

Clarifying data for thin film growth techniques

The clarification on CPP-NW makes sense: electrodeposition results in dilute alloys, which likely contribute to a shorter spin diffusion length compared to pure metals. For growth techniques, we'll reference the weak localization measurement: Cu thin films yield 720 nm l_sf at 4.5 K. This comes from evaporated WL thin films.

Compiling spin diffusion length data for growth conditions

To summarize, for high purity thin films, weak localization yields spin diffusion lengths (l_sf) from 520–720 nm at low temperatures. At room temperature, bulk Cu has an l_sf around 500 nm, with a range of 350–700 nm. Better quality (annealed, larger grains) gives longer l_sf, while more grain boundaries result in shorter values.

Summarizing spin diffusion lengths across different conditions

Here’s a roundup of the data:

  • For lateral nonlocal geometry (e-beam evaporated Cu), l_sf is around 350±50 nm at RT, and 1000±200 nm at 4.2 K.
  • For typical metallic contacts, l_sf ranges from 500–700 nm at RT, 920 nm at 4.2 K, and 200±20 at 10 K.
  • For CPP nanowires (electrodeposited), l_sf is 36±14 nm at 300 K and 140±15 nm at 77 K.
  • For CPP nanopillars, l_sf is 170±40 nm at RT.

All sources are from reviews and studies mentioned.

Summarizing self-spin diffusion length (λ_s) in Cu systems

For Cu with MgO capping in lateral spin valves, the self-spin diffusion length (l_sf) reaches 1.3 μm at 10 K. Electrochemically gated grain boundaries show λ_Cu values of 300-380 nm at room temperature. The review also notes the relationship between l_sf and resistivity (ρ). Growth conditions affect λ_sf, according to the Elliott-Yafet mechanism.

Explaining l_sf dependence on microstructure and temperature

The spin diffusion length (l_sf) is affected by resistivity (impurities, grain boundaries, surfaces), temperature, and growth process. At room temperature for copper, typical values range from 0.3-0.7 µm; at 10 K, 0.5-1.3 µm, while disordered electrodeposited multilayers lead to much lower values, tens of nm.

Citing l_sf values with appropriate structure

Citations should follow the values listed but not be placed inside bold text. I'll listing them clearly after each value in a structured format, such as Cu 4.5 K WL: resistivity 39 nΩm, l_sf 720 nm (source). I'll include all the necessary references while following the formatting regulations for clarity.

Summarizing l_sf variations by deposition method

I need to summarize the variations of spin diffusion length (l_sf) for different copper deposition methods. For high-purity thick Cu (annealed), l_sf is 350-700 nm at room temperature and 0.9-1.0 µm at low temperatures. For thinner Cu, like evaporated thin wires, it’s shorter. I'll organize them by technique and note that surface oxidation can affect results at low temperatures.

Thought for 4m 0s

Respuesta

Cu 的自旋扩散长度(spin diffusion length,常记作 lsfl_{\mathrm{sf}}λs\lambda_{\mathrm{s}}没有一个固定值,会随温度电阻率/缺陷(杂质、晶界、表面/界面散射)显著变化;Bass & Pratt 的综述就强调:对“名义上纯”的金属,lsfl_{\mathrm{sf}} 往往不是材料常数,不同样品/工艺会差很多,并常呈现与 1/ρ1/\rho 相关的趋势。 (arXiv)

下面按“生长/制备(微结构)条件”把文献里常见的 Cu lsfl_{\mathrm{sf}} 典型量级列出来(单位:nm 或 µm;同一工艺下也可能因纯度/粗糙度/厚度不同而有跨度)。

不同生长/制备条件下的典型 lsfl_{\mathrm{sf}}

1) 微纳加工 Cu 线(侧向非局域 LSV,金属透明接触;常对应蒸镀/溅射薄膜后刻蚀成线)

  • 室温(≈293–300 K):350 ± 50 nm(也有报告到 500–700 nm) (arXiv)
  • 低温(4.2 K): 约 **1.0 µm(=1000 nm)**量级(如 1000 ± 200 nm、920 nm) (arXiv)

这些数值通常代表“比较干净、但仍为多晶薄膜/微纳线”的水平;晶界/表面氧化会让低温行为更复杂(有些样品在几十 K 附近出现峰值)。(arXiv)


2) 电子束蒸发Cu 纳米线(厚度效应明显、晶界散射主导)

这类工作会把“生长方式”写得很清楚:蒸发 Cu,且缺陷散射主要来自晶界。(arXiv)
10 K 下(同一篇工作,不同厚度):

  • 145 nm 厚: lsf1020±6l_{\mathrm{sf}}\approx 1020 \pm 6 nm
  • 40 nm 厚: lsf501±19l_{\mathrm{sf}}\approx 501 \pm 19 nm
  • 中间厚度(60–100 nm)约 700–1000 nm (arXiv)

结论很直观:越薄、晶界/表面散射越强 ⇒ lsfl_{\mathrm{sf}} 越短。(arXiv)


3) CPP 纳米柱(CPP-NP;电子束光刻 + 刻蚀定义尺寸)

Bass & Pratt 综述对 CPP-NP 的制程描述:多为电子束光刻减法刻蚀做出来。(arXiv)

  • 室温: lsfCu170±40l_{\mathrm{sf}}^{\mathrm{Cu}}\approx 170 \pm 40 nm (arXiv)

这通常比“侧向 Cu 线”的几百 nm 更短,常见原因是纳米柱体系里散射更强、界面更多、有效电阻率更高。


4) 模板电沉积 Co/Cu 多层 CPP 纳米线(CPP-NW/ML)

综述里明确写了 CPP-NW/ML 可以电沉积到模板孔道中。(arXiv)
对应 Cu 的典型结果(在多层纳米线体系中提取):

  • 77 K: lsfCu140±15l_{\mathrm{sf}}^{\mathrm{Cu}}\approx 140 \pm 15 nm
  • 300 K: lsfCu36±14l_{\mathrm{sf}}^{\mathrm{Cu}}\approx 36 \pm 14 nm(文献里也给到约 20–65 nm 的范围) (arXiv)

并且综述特别指出:电沉积往往导致更强散射(甚至形成“稀释合金”式的混杂),会把 lsfCul_{\mathrm{sf}}^{\mathrm{Cu}} 拉得更短。 (arXiv)


5) 表面/界面工程(例如 Cu/MgO/Py 结构中用 MgO 改善界面相关散射)


6) 晶界/缺陷被“可逆调控”的多晶 Cu(电化学/离子调控等)

  • 室温: 有工作报告 λCu\lambda_{\mathrm{Cu}} 可在 300–380 nm间调节(并与电阻率变化相关,解释为晶界相关过程)。 (udspace.udel.edu)

一句话“工程经验值”

  • 室温 Cu: 常见在 0.3–0.7 µm(干净的侧向 Cu 线)到 ~0.17 µm(CPP 纳米柱),而在电沉积多层纳米线里可低到 几十 nm。(arXiv)
  • 低温(4–10 K): 多见 0.5–1.3 µm(取决于厚度、晶界/表面状态、是否有界面工程)。(arXiv)

如果你告诉我你关心的是 室温还是 低温、以及你的 Cu 是 溅射/蒸镀/电镀/外延、大概厚度与电阻率,我可以把上面这些“量级”进一步收敛到更贴近你工艺窗口的估算(Cu 里通常可以用“lsfl_{\mathrm{sf}}1/ρ1/\rho”做第一阶近似)。 (arXiv)

Compartir este Q&A