\begin{align*} (\frac{d_m}{2})^2-(\frac{d_n}{2})^2...
Creado el: 6 de mayo de 2025
Creado el: 6 de mayo de 2025
\begin{align*}
(\frac{d_m}{2})^2-(\frac{d_n}{2})^2&=(m - n)r\lambda
\frac{d_m^2 - d_n^2}{4}&=(m - n)r\lambda
r&=\frac{d_m^2 - d_n^2}{4(m - n)\lambda}
\end{align*}
\lambda\lambda = 589.3nm
仪器不确定度0.004mm计算R平均值和不确定度
mm
/mmd | /mmd | /mm | /mm | /mm | |
---|---|---|---|---|---|
20 | 25.080 | 19.448 | 5.632 | 31.719 | 8.679 |
19 | 25.018 | 19.530 | 5.488 | 30.118 | 9.270 |
18 | 24.891 | 19.614 | 5.277 | 27.847 | 8.531 |
17 | 24.805 | 19.700 | 5.105 | 26.061 | 8.253 |
16 | 24.727 | 19.778 | 4.949 | 24.493 | 8.204 |
15 | 24.620 | 19.820 | 4.800 | 23.040 | |
14 | 24.524 | 19.958 | 4.566 | 20.848 | |
13 | 24.435 | 20.040 | 4.395 | 19.316 | |
12 | 24.370 | 20.150 | 4.220 | 17.808 | |
11 | 24.270 | 20.234 | 4.036 | 16.289 |
pythonimport numpy as np, math deltas = np.array([8.679, 9.270, 8.531, 8.253, 8.204]) # mm^2 lam = 5.893e-4 # mm C = 20*lam R = deltas / C R array([736.38214831, 786.52638724, 723.82487697, 700.23757 , 696.08009503])
pythonR_mean = R.mean() R_std = R.std(ddof=1) # sample std R_mean, R_std (728.6102155099271, 36.40330034505399)
pythond_m = np.array([5.632, 5.488, 5.277, 5.105, 4.949]) d_n = np.array([4.800, 4.566, 4.395, 4.220, 4.036]) # d_{m-5} deltaR_instr = [] for dm, dn in zip(d_m, d_n): dDelta = math.sqrt((2*dm*0.004)**2 + (2*dn*0.004)**2) deltaR = dDelta / C deltaR_instr.append(deltaR) deltaR_instr [5.0228821184311805, 4.8458052429069935, 4.661472525036131, 4.49577451671188, 4.334682195521749]
pythonN = len(R) u_repeat = R_std / math.sqrt(N) u_instr = np.mean(deltaR_instr) # or worst-case combined = math.sqrt(u_repeat**2 + u_instr**2) (R_mean, u_repeat, u_instr, combined) (728.6102155099271, 16.280050835376453, 4.672123319721587, 16.937201407467757)
1. 取 m 与 m − 5 两个干涉环差法的公式
常数
.
m | / mm^2 | / mm |
---|---|---|
20 | 8.679 | 736.4 |
19 | 9.270 | 786.5 |
18 | 8.531 | 723.8 |
17 | 8.253 | 700.2 |
16 | 8.204 | 696.1 |
单次直径读数的不确定度:
.
采用其平均值 .
不确定度使用重复性不确定度和仪器不确定度平方和的根号
2.生成一个docx文件
python# Data data = [ (20, 5.632, 4.800), (19, 5.488, 4.566), (18, 5.277, 4.395), (17, 5.105, 4.22), (16, 4.949, 4.036) ] σ_d = 0.004 λ = 5.893e-4 C = 20 * λ # mm results = [] for m, d_m, d_n in data: dm2 = d_m**2 dn2 = d_n**2 diff = dm2 - dn2 R_i = diff / C # instrument uncertainty u_inst = math.sqrt((2*d_m*σ_d)**2 + (2*d_n*σ_d)**2)/C results.append((m, diff, R_i, u_inst)) results [(20, 8.679423999999997, 736.4181231970132, 5.0228821184311805), (19, 9.269788000000005, 786.5083997963691, 4.8458052429069935), (18, 8.530704000000004, 723.799762430002, 4.661472525036131), (17, 8.252625000000005, 700.2057525878165, 4.49577451671188), (16, 8.203305, 696.0211267605634, 4.334682195521749)]
pythonR_values = [r[2] for r in results] mean_R = statistics.mean(R_values) std_R = statistics.stdev(R_values) u_rep = std_R / math.sqrt(len(R_values)) mean_R, std_R, u_rep (728.5906329543528, 36.41827812711653, 16.286749103145258)
pythonu_insts = [r[3] for r in results] mean_u_inst = statistics.mean(u_insts) mean_u_inst 4.672123319721587
pythonu_c = math.sqrt(u_rep**2 + mean_u_inst**2) u_c 16.943639888273392
pythonfrom docx import Document from docx.shared import Inches # Data data = [ (20, 5.632, 4.800, 8.6794, 736.4), (19, 5.488, 4.566, 9.2698, 786.5), (18, 5.277, 4.395, 8.5307, 723.8), (17, 5.105, 4.220, 8.2526, 700.2), (16, 4.949, 4.036, 8.2033, 696.0) ] mean_R = 728.6 # mm u_rep = 16.3 # mm u_inst = 4.7 # mm u_c = 16.9 # mm doc = Document() doc.add_heading('迈克耳逊圆环法测定曲率半径 R 计算报告', level=1) doc.add_heading('1. 原始数据', level=2) table = doc.add_table(rows=1, cols=5) hdr_cells = table.rows[0].cells hdr_cells[0].text = 'm' hdr_cells[1].text = 'd_m (mm)' hdr_cells[2].text = 'd_{m-5} (mm)' hdr_cells[3].text = 'd_m^2 - d_{m-5}^2 (mm^2)' hdr_cells[4].text = 'R_i (mm)' for row in data: row_cells = table.add_row().cells for i, item in enumerate(row): row_cells[i].text = f'{item}' doc.add_heading('2. 计算结果', level=2) doc.add_paragraph(f'平均曲率半径 R̄ = {mean_R:.1f} mm') doc.add_paragraph(f'重复性不确定度 u_rep = {u_rep:.1f} mm') doc.add_paragraph(f'仪器不确定度 u_inst = {u_inst:.1f} mm') doc.add_paragraph(f'合成标准不确定度 u_c = √(u_rep^2 + u_inst^2) = {u_c:.1f} mm') doc.add_paragraph(f'最终结果: R = ({mean_R:.0f} ± {u_c:.0f}) mm (k=1)') file_path = '/mnt/data/曲率半径计算报告.docx' doc.save(file_path) file_path '/mnt/data/曲率半径计算报告.docx'
我已按“重复性不确定度 u_rep 与仪器不确定度 u_inst 作平方和再开根号”的方式重新计算,并把全过程整理成 Word 报告:
已生成 .docx 文件,内含原始数据表与计算细节,可直接下载查看: