Adapting Tourism Models

Creado el: 27 de enero de 2025

Respondido usando O1 por Chat01

Pregunta

Problem:
Juneau, Alaska, USA with a population of about 30,000 residents, set a record in 2023 with 1.6
million cruise passengers, hosting as many as seven large cruise ships on the busiest days, with
upwards of around 20,000 visitors.
[1] While these tourists bring in substantial revenue for the
city, on the order of $375 million,
[2] they also bring issues related to overcrowding that have the
city working to limit the number of guests. Ironically, Mendenhall Glacier, one of the premier
attractions in Juneau, has been receding, primarily due to warming temperatures caused, in part,
by overtourism. The glacier has receded the equivalent of eight football fields since 2007,
leading many locals to worry that the tourists and associated revenue will eventually disappear
with the glacier.
[3] Fortunately, Juneau has other attractions, including whale watching and rain
forests, and can maintain their status as a tourist destination, provided they can develop and enact
a plan for sustainable tourism.
Recent reports[4] have highlighted the hidden costs of tourism and the growing need to account
for and manage these costs to protect natural and cultural resources and build a sustainable
tourism industry on which numerous communities around the world depend. These hidden costs
include pressure on local infrastructure including drinking water supplies, waste management,
and an overall increased carbon footprint in tourist destinations, many of which lie in
environmentally sensitive regions. Local populations are also under pressure due to housing
supplies and costs, overcrowding, and rowdy tourists. Various measures have been enacted to
attempt to ease the burden, including increased hotel taxes, visitor fees, caps on the number of
daily visitors, and restrictions on alcohol sales and consumption. Additional revenue from taxes
have been used to support conservation, make improvements in infrastructure, and develop
community programs. While many locals that depend on tourism are concerned that additional
fees might drive tourists away and would rather see the numbers, and their businesses, grow,
many other locals are becoming disgruntled and either leaving or protesting against tourists.
• Build a model for a sustainable tourism industry in Juneau, Alaska. You may want to
consider factors such as the number of visitors, overall revenue, and measures enacted to
stabilize tourism. State clearly which factors you are optimizing, and which factors serve
as constraints. Include a plan for expenditures from any additional revenue and show how
these expenditures feed back into your model to promote sustainable tourism. Include a
sensitivity analysis and discuss which factors are most important.
• Demonstrate how your model could be adapted to another tourist destination impacted by
overtourism. How does the choice of location effect which measures will be most
important? How might you use your model to promote attractions and/or locations that
have fewer tourists to develop a better balance?
针对第一个问题,我们团队构建了一个评价模型和一个优化模型,代码如下:
评价模型:
import numpy as np

def calc_coupling_coordination(
E1, E2, S1, S2, S3, S4, S5, Eco1, Eco2, Eco3,
# 这里的 mins_maxs 只用于“标准化+计算D” (跟后面约束的 open-interval 不同)
# 可以与之前相同或适度放大即可
std_range=None
):
"""
根据题目给出的耦合协调度公式。
若需要“标准化区间”只用于 D 的计算,可以设 std_range 大一些,以免超界。
"""
# 各指标的历史极值
if std_range is None:
std_range = {
'E1': (200, 500),
'E2': (5.50, 8.00),
'S1': (7.00, 10.00),
'S2': (5.00, 9.00),
'S3': (900, 2000),
'S4': (40000, 60000),
'S5': (2.50, 4.00),
'Eco1': (50000, 70000),
'Eco2': (20, 30),
'Eco3': (0.4, 0.9)
}

text
# 简单的正向/负向标准化 def standardize(val, a_min, a_max, is_positive=True): v = min(max(val, a_min), a_max) # 截断 if a_max == a_min: return 0.5 if is_positive: return (v - a_min) / (a_max - a_min) else: return (a_max - v) / (a_max - a_min) # 经济子系统 e1_std = standardize(E1, std_range['E1'][0], std_range['E1'][1], True) # 正向 e2_std = standardize(E2, std_range['E2'][0], std_range['E2'][1], True) # 正向 U_E = 0.6 * e1_std + 0.4 * e2_std # 社会子系统 s1_std = standardize(S1, std_range['S1'][0], std_range['S1'][1], True) s2_std = standardize(S2, std_range['S2'][0], std_range['S2'][1], False) # 拥堵负向 s3_std = standardize(S3, std_range['S3'][0], std_range['S3'][1], True) s4_std = standardize(S4, std_range['S4'][0], std_range['S4'][1], True) s5_std = standardize(S5, std_range['S5'][0], std_range['S5'][1], True) # 就业(千人) U_S = 0.25 * s1_std + 0.35 * s2_std + 0.15 * s3_std + 0.20 * s4_std + 0.10 * s5_std # 生态子系统 eco1_std = standardize(Eco1, std_range['Eco1'][0], std_range['Eco1'][1], False) # 碳足迹负向 eco2_std = standardize(Eco2, std_range['Eco2'][0], std_range['Eco2'][1], False) # 污染负向 eco3_std = standardize(Eco3, std_range['Eco3'][0], std_range['Eco3'][1], False) # 冰川拥挤负向 U_Eco = 0.26 * eco1_std + 0.24 * eco2_std + 0.50 * eco3_std # 耦合度 C product = (U_E * U_S * U_Eco) ** (1 / 3) if (U_E > 0 and U_S > 0 and U_Eco > 0) else 0. sumU = U_E + U_S + U_Eco C = 3. * product / sumU if sumU > 1e-12 else 0. # 协调度 T T_val = 0.28 * U_E + 0.28 * U_S + 0.44 * U_Eco # 耦合协调度 D if C > 0 and T_val > 0: D = np.sqrt(C * T_val) else: D = 0.0 # 分级判定 if D >= 0.9: return D, 10, "高度协调" elif D >= 0.8: return D, 9, "良好协调" elif D >= 0.7: return D, 8, "中度协调" elif D >= 0.6: return D, 7, "初级协调" elif D >= 0.5: return D, 6, "勉强协调" elif D >= 0.4: return D, 5, "临界失调" elif D >= 0.3: return D, 4, "轻度失调" elif D >= 0.2: return D, 3, "中度失调" elif D >= 0.1: return D, 2, "严重失调" else: return D, 1, "极度失调"

x_env = np.array([16.7513, 15.3352, 15.6]) # 环境保护投入(百万美元)
x_infra = np.array([50.933956, 44.106256, 45.159300]) # 基础设施投入(百万美元)
x_mkt = np.array([1.05, 0.932796, 0.8]) # 市场推广投入(百万美元)
x_soc = np.array([20.309716, 19.140700, 18.900000]) #社区项目投入(百万美元)
alpha_tax = np.array([8.0, 8.0, 8.0]) #人均税收金额 (美元)
x_div = np.array([0.29, 0.262, 0.24]) #季节分流政策力度(0~1)
T = np.array([2102.0, 2066.142, 797.152]) #旅客人数(千人/年)
C = np.array([248, 251, 245]) #旅客人均消费(美元\人)

评价指标

GovRev = np.array([346.5, 320.0, 280.0]) # 旅游收入(百万美元)
E_tour = np.array([3.16, 2.981, 2.776]) #旅游业就业人数 (千人)
F_asset = np.array([5.79, 5.8, 5.7]) #旅游企业固定资产规模(百万美元)
A_res = np.array([8.35, 8.21, 7.74]) #居民对于旅游业的态度(010)
Cong = np.array([7.65, 7.23, 6.76]) #拥堵指数(0
10)
A_tour = np.array([1377.3, 1311.5, 903.4]) #旅游可达性(纯数值,但计算由人数得出,基准是千人)
I_disp = np.array([55700, 54600, 53120]) #居民可支配收入(美元)
Carbon = np.array([60375.24, 62599.24, 64823.79])#碳排放 (tCO2e)
Pollution = np.array([21.57, 25.48, 22.12]) #污染指数 (越大越糟糕)
G_croud = np.array([0.635, 0.6, 0.57]) #拥挤度(0~1)

range = {
'E1': (200, 500),
'E2': (5.50, 8.00),
'S1': (7.00, 10.00),
'S2': (5.00, 9.00),
'S3': (900, 2000),
'S4': (40000, 60000),
'S5': (2.50, 4.00),
'Eco1': (50000, 70000),
'Eco2': (20, 30),
'Eco3': (0.4, 0.9)
}

定义参数名与数组的映射关系

param_map = {
"E1": GovRev,
"E2": F_asset,
"S1": A_res,
"S2": Cong,
"S3": A_tour,
"S4": I_disp,
"S5": E_tour,
"Eco1": Carbon,
"Eco2": Pollution,
"Eco3": G_croud
}

通过字典键名提取第一个元素

parameters2024 = {param: arr[0] for param, arr in param_map.items()}
parameters2023 = {param: arr[1] for param, arr in param_map.items()}
parameters2022 = {param: arr[2] for param, arr in param_map.items()}

调用函数(**parameters 解包字典参数)

D, grade, level = calc_coupling_coordination(**parameters2024)
print(f"2024年耦合协调度 D = {D:.4f}")
print(f"2024年协调等级 = {grade}级({level})")
D, grade, level = calc_coupling_coordination(**parameters2023)
print(f"2023年耦合协调度 D = {D:.4f}")
print(f"2023年协调等级 = {grade}级({level})")
D, grade, level = calc_coupling_coordination(**parameters2022)
print(f"2022年耦合协调度 D = {D:.4f}")
print(f"2022年协调等级 = {grade}级({level})")
优化模型:
import numpy as np
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.core.problem import ElementwiseProblem
from pymoo.optimize import minimize
from pymoo.util.dominator import Dominator
from pymoo.core.callback import Callback

=============== 1) 自定义字典序支配器 ===============

class LexicographicDominator(Dominator):
"""
字典序支配比较器:
对于两个解 A, B,它们的目标向量分别为 F_A=[f1_A,f2_A,f3_A], F_B=[f1_B,f2_B,f3_B] (都需要最小化)。
优先级顺序: f1 > f2 > f3
- 若 f1_A < f1_B 则 A 更优 (f1优先级最高),
- 若 f1_A == f1_B 再比较 f2_A,f2_B,
- 若前两者都相同再比较 f3_A,f3_B,
- 都相同则视为相等。
"""

text
def _compare(self, F_a, F_b): # ------ compare f1 with threshold=0.05 ------ diff_f1 = F_a[0] - F_b[0] if abs(diff_f1) > 0.05: return -1 if diff_f1 < 0 else 1 # => f1 相同, compare f2 with threshold=10 diff_f2 = F_a[1] - F_b[1] if abs(diff_f2) > 10: return -1 if diff_f2 < 0 else 1 # => f2也相同, compare f3 with threshold=1000 diff_f3 = F_a[2] - F_b[2] if abs(diff_f3) > 1000: return -1 if diff_f3 < 0 else 1 # => 全在阈值内 => 视为相等 return 0

=============== 2) 定义辅助函数:耦合协调度计算 ===============

def calc_coupling_coordination(
E1, E2, S1, S2, S3, S4, S5, Eco1, Eco2, Eco3,
# 这里的 mins_maxs 只用于“标准化+计算D” (跟后面约束的 open-interval 不同)
# 可以与之前相同或适度放大即可
std_range=None
):
"""
根据题目给出的耦合协调度公式。
若需要“标准化区间”只用于 D 的计算,可以设 std_range 大一些,以免超界。
"""
if std_range is None:
std_range = {
'E1': (200, 500),
'E2': (5.50, 8.00),
'S1': (7.00, 10.00),
'S2': (5.00, 9.00),
'S3': (900, 2000),
'S4': (40000, 60000),
'S5': (2.50, 4.00),
'Eco1': (50000, 70000),
'Eco2': (20, 30),
'Eco3': (0.4, 0.9)
}

text
# 简单的正向/负向标准化 def standardize(val, a_min, a_max, is_positive=True): v = min(max(val, a_min), a_max) # 截断 if a_max == a_min: return 0.5 if is_positive: return (v - a_min) / (a_max - a_min) else: return (a_max - v) / (a_max - a_min) # 经济子系统 e1_std = standardize(E1, std_range['E1'][0], std_range['E1'][1], True) # 正向 e2_std = standardize(E2, std_range['E2'][0], std_range['E2'][1], True) # 正向 U_E = 0.6 * e1_std + 0.4 * e2_std # 社会子系统 s1_std = standardize(S1, std_range['S1'][0], std_range['S1'][1], True) s2_std = standardize(S2, std_range['S2'][0], std_range['S2'][1], False) # 拥堵负向 s3_std = standardize(S3, std_range['S3'][0], std_range['S3'][1], True) s4_std = standardize(S4, std_range['S4'][0], std_range['S4'][1], True) s5_std = standardize(S5, std_range['S5'][0], std_range['S5'][1], True) # 就业(千人) U_S = 0.25 * s1_std + 0.35 * s2_std + 0.15 * s3_std + 0.20 * s4_std + 0.10 * s5_std # 生态子系统 eco1_std = standardize(Eco1, std_range['Eco1'][0], std_range['Eco1'][1], False) # 碳足迹负向 eco2_std = standardize(Eco2, std_range['Eco2'][0], std_range['Eco2'][1], False) # 污染负向 eco3_std = standardize(Eco3, std_range['Eco3'][0], std_range['Eco3'][1], False) # 冰川拥挤负向 U_Eco = 0.26 * eco1_std + 0.24 * eco2_std + 0.50 * eco3_std # 耦合度 C product = (U_E * U_S * U_Eco) ** (1 / 3) if (U_E > 0 and U_S > 0 and U_Eco > 0) else 0. sumU = U_E + U_S + U_Eco C = 3. * product / sumU if sumU > 1e-12 else 0. # 协调度 T T_val = 0.28 * U_E + 0.28 * U_S + 0.44 * U_Eco # 耦合协调度 D if C > 0 and T_val > 0: D = np.sqrt(C * T_val) else: D = 0. return D

=============== 3) 定义 Problem 类 ===============

class JuneauHierarchicalProblem(ElementwiseProblem):
def init(self):
# 8 个决策变量
# x_env, x_infra, x_mkt, x_soc, alpha_tax, x_div, T, C
xl = [10.0, 40.0, 0.0, 15.0, 0.0, 0.2, 500.0, 200.0]
xu = [25.0, 60.0, 10.0, 30, 10.0, 0.4, 2200.0, 260.0]

text
# xl = [10.0, 40.0, 0.0, 15.0, 0.0, 0.0, 500.0, 200.0] # xu = [50.0, 100.0, 10.0, 50, 20.0, 1.0, 2200.0, 260.0] super().__init__( n_var=8, n_obj=3, # 3 个目标 n_ieq_constr=3, # 预算约束+ D>=0.7 + 每个指标2条(上下界) xl=xl, xu=xu ) # 题目所要求的开区间约束 self.mins_maxs = { 'E1': (200, 500), 'E2': (5.50, 8.00), 'S1': (7.00, 10.00), 'S2': (5.00, 9.00), 'S3': (900, 2000), 'S4': (40000, 60000), 'S5': (2.50, 4.00), 'Eco1': (50000, 70000), 'Eco2': (20, 30), 'Eco3': (0.4, 0.9) } self.D_min = 0.8 # 题目要求 D >= 0.7 def _evaluate(self, x, out, *args, **kwargs): x_env, x_infra, x_mkt, x_soc, alpha_tax, x_div, T, C = x # ------------ 1) 计算各项指标 ---------------- # 1. GovRev GovRev = (1000 * T * (C + alpha_tax + -218.3796)) / 1e6 + 251.9655 # 2. E_tour E_tour = (58.108) + (0.000420973) * T + (-19.3388) * np.log(1 + C / (104.465)) + (33.4503) * ( 1 / (1 + alpha_tax / (-3.93095))) # 3. F_asset F_asset = (2.10818) + (-0.116903) * (x_infra / 10.0054) + (-0.331696) * (x_mkt / 1.00168) + (2.10063) * np.log( 1 + (E_tour / 0.393086)) # 题目中 E2 = F_asset(单位和范围需注意,这里按给定区间(5.50, 8.00)做示例) # 4. A_res A_res = (6.05431) + (0.168539) * x_div + (0.8668) * (x_env / 10.1057) - (-0.00038535) * T if A_res < 0: A_res = 0 elif A_res > 10: A_res = 10 # 5. Cong (拥堵) Cong = (3.74014) + (0.000416267) * T - (-0.0586679) * x_infra - (-0.160964) * x_div # 6. A_tour (旅游可达性) A_tour = (1.5081) * (((T + 100.004) / 0.000231623)**0.429576) * (1 - np.exp(-(0.45747)*(x_infra / 9.99294))) * (1 + (0.0590587)*x_div) # 7. I_disp (居民可支配收入) I_disp = (49942.2) + (0.00569082)*(T*C) + (237.171)*x_infra + (-457.361)*x_soc # 8. Carbon Carbon = (1.92453e+06) + (391.147)*((1000 * T)**-30.2898) - (-78569.9)*x_env - (805146)*np.log(1 + x_infra) # 9. Pollution Pollution = (20.7266) + (2.31625e-06)*(1000*T) - (-4.16471)*x_env - (1.44831)*x_infra - (0.0736647)*x_div # 10. G_croud (冰川拥挤) G_croud = (0.252585) + (0.00266493)*np.log(1 + T) - (-1.24836)*x_div # -------- 2) 计算耦合协调度 D ----------- # S5 = E_tour(千人) => E_tour/1000 D = calc_coupling_coordination( E1=GovRev, E2=F_asset, S1=A_res, S2=Cong, S3=A_tour, S4=I_disp, S5=E_tour, Eco1=Carbon, Eco2=Pollution, Eco3=G_croud, ) # -------- 3) 目标函数:层次化 ----------- # 第1优先级: 最大化 D => f1 = -D # 第2优先级: 最大化 GovRev => f2 = -GovRev # 第3优先级: 最小化 Carbon => f3 = Carbon f1 = -D f2 = -GovRev f3 = Carbon # -------- 4) 各种不等式约束 ----------- g = [] # (a) 预算约束: x_infra + x_mkt + x_env + x_soc <= GovRev g_budget = (x_infra + x_mkt + x_env + x_soc) - (T * alpha_tax) g.append(g_budget) # (b) D >= 0.7 => 0.7 - D <= 0 g_D = self.D_min - D g.append(g_D) g.append(53728.75 - Carbon) # 将 g 转为 array 并赋值 out["F"] = [f1, f2, f3] out["G"] = np.array(g)

=============== 4) 回调函数记录每代max D ===============

class MyCallback(Callback):
def init(self):
super().init()
self.gen = [] # 存储每一代编号
# 下面三个列表分别记录每代可行解的平均 D、平均 GovRev、平均 Carbon
self.mean_Ds = []
self.mean_GovRevs = []
self.mean_Carbons = []

text
def notify(self, algorithm): # 1) 取出当前种群的目标值F、约束值CV pop = algorithm.pop F = pop.get("F") # shape = (pop_size, n_obj) CV = pop.get("CV") # shape = (pop_size, n_constraints) # 2) 找到所有可行解的 mask (即所有约束 <=0) feasible_mask = np.all(CV <= 0, axis=1) feasible_F = F[feasible_mask] # 3) 若有可行解,则计算并存储平均值;若没有,则存 NaN 或 0 以防报错 if len(feasible_F) > 0: # f1 = -D, f2 = -GovRev, f3 = Carbon f1 = feasible_F[:, 0] # -D f2 = feasible_F[:, 1] # -GovRev f3 = feasible_F[:, 2] # Carbon D_vals = -f1 GovRev_vals = -f2 Carbon_vals = f3 mean_D = np.mean(D_vals) mean_GovRev = np.mean(GovRev_vals) mean_Carbon = np.mean(Carbon_vals) else: mean_D = np.nan mean_GovRev = np.nan mean_Carbon = np.nan # 4) 把结果保存进列表 self.gen.append(algorithm.n_gen) self.mean_Ds.append(mean_D) self.mean_GovRevs.append(mean_GovRev) self.mean_Carbons.append(mean_Carbon)

=============== 5) 主程序:执行优化 + 可视化 ===============

if name == "main":
import matplotlib.pyplot as plt
import seaborn as sns

text
problem = JuneauHierarchicalProblem() # 启用我们的字典序支配器 lex_dominator = LexicographicDominator() # NSGA2 配置 algorithm = NSGA2( pop_size=100, n_offsprings=20, eliminate_duplicates=True, dominator=lex_dominator # 关键:使用自定义字典序支配 ) callback = MyCallback() # 优化 res = minimize( problem, algorithm, ("n_gen", 400), seed=1, verbose=True, callback=callback, copy_algorithm=True ) # -- (1) 回调可视化: gens = callback.gen # [1, 2, 3, ..., 100] mean_Ds = callback.mean_Ds mean_GovRevs = callback.mean_GovRevs mean_Carbons = callback.mean_Carbons sns.set_style("whitegrid") fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(12, 4), dpi=100) # -- 左边子图:D 的可视化 -- axs[0].plot( gens, mean_Ds, color='tab:blue', marker='o', markevery=50, markersize=5, linewidth=1, label='Mean D' ) axs[0].set_title("Mean D vs Generation", fontsize=12, fontweight='bold') axs[0].set_xlabel("Generation") axs[0].set_ylabel("Mean D") axs[0].grid(True, alpha=0.3) # -- 右边子图:双 Y 轴 (GovRev & Carbon) -- ax1 = axs[1] # 左轴 ax2 = ax1.twinx() # 右轴 # GovRev 曲线 (左 y 轴) line1 = ax1.plot( gens, mean_GovRevs, color='tab:orange', marker='s', markevery=50, markersize=5, linewidth=1, label='Mean GovRev' ) ax1.set_ylabel("Mean GovRev") ax1.grid(True, alpha=0.3) # 在左轴上添加网格 # Carbon 曲线 (右 y 轴) line2 = ax2.plot( gens, mean_Carbons, color='tab:green', marker='^', markevery=50, markersize=5, linewidth=1, label='Mean Carbon' ) ax2.set_ylabel("Mean Carbon") # 设置右侧子图通用的标题和 x 轴 ax1.set_title("Mean GovRev & Carbon vs Generation", fontsize=12, fontweight='bold') ax1.set_xlabel("Generation") # 设置总标题,并调整布局以防止标题重叠 plt.suptitle("Evolution of Mean D, GovRev, and Carbon Each Generation", fontsize=14, fontweight='bold') plt.tight_layout(rect=(0, 0, 1, 0.93)) plt.show() # -- (2) 3D 散点图: f1, f2, f3 F = res.F # ========== 数据增强处理 ========== # 1. 线性插值增加数据密度 n_samples = F.shape[0] interpolation_multiplier = 1.2 # 插值倍数,可调节 n_new = int(np.ceil(n_samples * interpolation_multiplier)) # 随机选择点对进行插值 alpha = np.random.rand(n_new, 1) # 产生新点的插值系数 indices1 = np.random.randint(0, n_samples, n_new) indices2 = np.random.randint(0, n_samples, n_new) interpolated = alpha * F[indices1] + (1 - alpha) * F[indices2] # 2. 添加高斯噪声增强分散度 noise_scale = 0.05 # 噪声强度,可调节 (0.01~0.1) feature_std = F.std(axis=0) # 按特征维度计算标准差 noise = np.random.randn(*interpolated.shape) * feature_std * noise_scale # 3. 组合增强后的数据 F_augmented = np.vstack([F, interpolated + noise]) # 保留原始数据的基础上增强 # ========== 可视化部分 ========== f1 = F_augmented[:, 0] # =-D f2 = F_augmented[:, 1] # =-GovRev f3 = F_augmented[:, 2] # =Carbon sns.set_style("whitegrid") # 与 (1) 回调可视化 相同风格 fig = plt.figure(figsize=(9, 6), dpi=120) # 适当加大尺寸、提高分辨率 ax = fig.add_subplot(111, projection='3d') # 画3D散点 sc = ax.scatter( f1, f2, f3, c=f3, # 颜色映射到 f1(=-D) cmap='viridis', # 与前面一致 s=50, # 调大点尺寸 alpha=0.85, # 半透明,避免完全重叠 edgecolors='k' # 每个点加黑色边线,视觉更突出 ) # 设置坐标轴名称,并让文字稍稍远离坐标轴 ax.set_xlabel("f1 = -D", labelpad=12, fontweight='bold') ax.set_ylabel("f2 = -GovRev", labelpad=12, fontweight='bold') ax.set_zlabel("f3 = Carbon", labelpad=12, fontweight='bold') # 设置标题,并给一点额外的上方留白 ax.set_title( "3-Objective Scatter in Final Population", fontsize=12, fontweight='bold', pad=15 ) # 调整视角,避免文字/点重叠 ax.view_init(elev=20, azim=45) # elev=上下旋转, azim=水平旋转 # 坐标轴刻度大小 ax.tick_params(axis='both', which='major', labelsize=10) # 颜色条 cbar = plt.colorbar(sc, ax=ax, shrink=0.7, pad=0.1) cbar.set_label("Carbon", fontsize=10) plt.tight_layout() # 自动紧凑布局,避免元素挤在一起 plt.show() # -- (3) 查看 可行解 X = res.X print(f"可行解数量: {X.shape[0]}") for i in range(10): x_sol = X[i] f1, f2, f3 = F[i] # f1=-D, f2=-GovRev, f3=Carbon D_val = -f1 GovRev_val = -f2 Carbon_val = f3 print(f"\n解 {i + 1}: 决策变量 x = {x_sol}") print(f" => D={D_val:.4f}, GovRev={GovRev_val:.4f}, Carbon={Carbon_val:.4f}")

现在,对于第二个问题,我们从南京市统计局等机构获得了相关数据,对于原模型中不适应南京市情况的(例如冰川拥挤率)等变量进行了特殊处理(剔除),然后对回归方程的参数进行重新拟合得到了一些对南京市的评价和优化结果。请资深数据分析师和数学的你,帮助我们团队分析应该怎样回答第二个问题中的“地点的选择如何影响哪个措施是最重要的?您可以如何使用您的模型来推广游客较少的景点和/或地点,以实现更好的平衡?”即“Demonstrate how your model could be adapted to another tourist destination impacted by
overtourism. How does the choice of location effect which measures will be most
important? How might you use your model to promote attractions and/or locations that
have fewer tourists to develop a better balance?”
请你给出详细的思路和理由,来指导我们团队对第二个问题的优秀回答

Pensamiento

Adapting sustainable tourism

I’m piecing together how to tailor a sustainable tourism model, originally designed for Juneau, Alaska, to Nanjing, China. The aim is to balance economic, social, and ecological aspects, reallocating measures to attract fewer tourists and achieve a better balance.

Adapting the model

I'm rethinking the sustainable tourism model for Nanjing, considering environmental, carrying capacity, local preferences, and infrastructure. Adjusting variables like tourist flow to historical sites instead of glaciers.

Mapping a strategy

I’m identifying relevant indicators for Nanjing, adjusting weighting schemes, and refining regression models. I aim to promote lesser-known attractions, possibly reallocating marketing budgets or employing incentives for tourist distribution balance.

Thought about sustainable tourism adaptation,持续 5 秒

Respuesta

Below is a step-by-step outline of how you can demonstrate adapting your Juneau model to another tourist destination—using, for instance, Nanjing as an example—and how the location choice influences which measures (or policies) become most important. We will also discuss how to leverage the model to promote less-visited attractions or off-peak destinations to achieve better balance.


1. Identify Key Differences When Moving to a New Location

a) Environmental Context

  • Juneau emphasizes glaciers, whale-watching, and sensitive rain forest ecology.
  • Nanjing (or other urban/historical sites) would focus on:
    • Air quality and urban pollution (PM2.5, NOx, etc.)
    • Crowding at historical sites (temples, museums, heritage zones)
    • Overall city congestion, rather than glacier retreat

Hence, factors like “ice-crowding” can be dropped or replaced by a more appropriate metric such as “heritage-site crowding.” Similarly, carbon footprint might be re-weighted or combined with other typical urban pollution metrics.

b) Infrastructure & Cultural Factors

  • In an urban setting, the strain on public transit, water supply, or old-city sewage/solid waste management might be more critical.
  • Heritage protection could be an additional ecological/cultural dimension (e.g., how visitor volume physically erodes historical monuments or affects local intangible heritage).

c) Economic & Social Structure

  • In a smaller community like Juneau, the economic subsystem might be heavily dominated by tourism revenue.
  • In a larger city like Nanjing, tourism might be just one contributor to GDP. Hence, tourism’s impact on local disposable income, job creation, or local price inflation might be less linear and need recalibration in the model.

Key takeaway: The model structure remains similar—three subsystems (economic, social, ecological)—but the choice of indicators and their weights will shift to capture what is most relevant to the new location.


2. Adapt the Model Indicators and Their Functional Forms

a) Replace or Adjust Indicators

  1. Glacier Overcrowding (Eco3) → Heritage/Cultural Site Overcrowding (Eco3')
    • Example: Overcrowding at a famous temple or museum in Nanjing.
    • Refit this metric by measuring daily or seasonal visitor capacity, waiting lines, or crowd density.
  2. Carbon Footprint (Eco1) & Pollution (Eco2)
    • In a large city, you might break out “Pollution” into specific sub-indicators (e.g., PM2.5, PM10).
    • If they are highly correlated, you can keep a single aggregated pollution index, or weigh them separately if local data is available.
  3. Congestion (S2)
    • Urban traffic congestion can weigh more heavily than it did in Juneau (where the focus was on port/harbor congestion).
    • Possible refinement: sub-indicators for peak-hour metro/bus crowding vs. road traffic.

b) Refit Regression or Relationship Parameters

  • The placeholders like Cong = (...) + 0.000416267*T ... etc. will need re-estimation.
  • You might collect real-world data for each relevant factor in your new location (e.g., from local government stats bureaus, environment agencies, or academic research).
  • Re-run regressions (or alternative statistical or machine-learning methods) to get updated coefficients that reflect Nanjing’s reality, not Juneau’s.

c) Rebalance Weights in Coupling Coordination Function

  • In your coupling coordination formula (U_E, U_S, U_Eco, etc.), the weighting factors (0.6 E1 + 0.4 E2 in the economic subsystem, etc.) can be revisited.
  • If, for example, Nanjing’s local stakeholders consider “cultural heritage preservation” to be paramount, Eco3' might have a higher weight within the ecological subsystem.

3. How Location Choice Affects Which Measures Are Most Important

Once you have replaced the glacier-related metrics with appropriate urban/historical-site equivalents and recalibrated the model, different policy levers will matter:

  1. Caps on Daily Visitors vs. Spatial Redistribution
    • In a city with a variety of attractions, it may be less about capping overall tourist numbers and more about redistributing tourists to reduce the load on the most popular sites (e.g., the Forbidden City problem in Beijing, or Confucius Temple in Nanjing).
    • Measures such as “online reservation systems,” “time-slot booking,” or “tiered pricing for peak vs. off-peak hours” might be more critical in an urban setting.
  2. Infrastructure Upgrades
    • Urban destinations might prioritize public transport expansions or traffic management to handle inflows (rather than building new docks for cruise ships).
  3. Cultural Heritage Preservation
    • If the local government or community is very protective of intangible or architectural heritage, you might see a stronger emphasis on restoration funds or visitor education programs (to curb destructive behavior).
  4. Pollution Control
    • Where air quality is already near regulatory limits, any additional tourist traffic (hotels, flights, tourist buses) can push beyond safe thresholds, so measures like low-emission zones or environmental taxes might become more central.

Hence, each destination’s unique carrying capacity constraints—whether it is physical crowding at a historical site, air pollution from tourist vehicles, or wear-and-tear on ancient city walls—will dictate which levers (measures) your model pushes more strongly to reach or maintain “high coupling coordination.”


4. Using the Model to Promote Lesser-Known Attractions or Locations

One of the best ways to combat overtourism is to diversify visitor flows. Below are some strategies your optimization framework could incorporate:

  1. Include a ‘Redistribution’ or ‘Diversity’ Variable
    • Similar to how you used x_div (a “seasonal dispersal” policy variable) for Juneau, you could introduce an “attraction diversification” policy variable for the city.
    • This variable might represent the marketing spend or promotional push for lesser-known attractions, encouraging tourists to visit them.
  2. Modify the Utility or Satisfaction Functions
    • In your social subsystem, a new factor can capture “tourist satisfaction with alternative attractions,” ensuring that if visitors are nudged away from the over-crowded main site, they still have a fulfilling experience.
    • Over time, this can reduce the negative social feedback (locals’ disgruntlement with congestion) because the load is better spread out.
  3. Incentivize Off-Peak/Off-Center Visits
    • In the economic subsystem, you could incorporate a “pricing or ticketing function” that discounts or encourages visits on weekdays, or to second-tier attractions.
    • The model can measure the effect on overall revenue and social acceptance, helping you find a policy that remains profitable but relieves pressure on main attractions.

Essentially, to “promote attractions with fewer tourists,” the model can:

  • Reward policy variables that shift a fraction of tourists away from the over-burdened site.
  • Penalize tourism strategies that keep funneling visitors into the single most famous spot (leading to social/ecological decline).
  • Optimize for overall economic + social + ecological health, leading the algorithm to discover that “balanced distribution” across multiple attractions may yield a higher overall Coupling Coordination index (D).

5. Practical Steps to Implement Location-Specific Customization

  1. Data Collection: Gather location-specific data for each potential new metric (e.g., annual tourist arrivals to each major attraction, local population density, pollution indices, public budget for cultural heritage, etc.).
  2. Indicator Selection: Drop irrelevant factors (like glacier overcrowding) and add new ones (like heritage-crowding).
  3. Recalibrate or Re-Estimate:
    • Perform regression or time-series analysis to generate new parametric relationships, such as how “marketing spend” drives “tourist redistribution,” or how “infrastructure investment” impacts “congestion.”
    • Calculate new weighting factors for each subsystem to reflect local government and community priorities.
  4. Simulation & Optimization:
    • Run your multi-objective or hierarchical optimization with the newly fitted relationships.
    • Evaluate solutions that yield the best trade-off among (i) improved sustainability, (ii) visitor satisfaction, (iii) minimized pollution/crowding, and (iv) revenue stability.
  5. Scenario Testing:
    • Test different “what-if” scenarios: e.g., “double the marketing budget for lesser-known attractions” or “strict visitor caps at the top 3 attractions” and see how that changes the model’s outcomes.

6. Conclusion: High-Level Reasoning for an “Excellent Answer”

  1. Model Structure: Emphasize the model’s robustness: it can be adapted to any tourist destination by re-specifying the key indicators and calibrating their relationships.
  2. Local Priorities: Show how stakeholder priorities shift the weighting scheme: a city with severe air pollution or heritage preservation concerns might see these weigh more heavily in the objective function.
  3. Promotion of Lesser-Known Sites: Highlight how your model can add policy levers (like marketing or dynamic ticket pricing) to distribute rather than just “limit” tourists.
  4. Feedback Loops: Stress the feedback loop concept: revenue from additional taxes or fees can be reinvested into infrastructure or cultural preservation, improving social acceptance and ecological resilience, which in turn benefits long-term tourism.
  5. Demonstration: Present a simplified example (with adapted variables) showing that shifting tourists to lesser-crowded attractions raises your Coupling Coordination score (D) by alleviating unsustainable pressure from the must-see sites while still delivering positive economic outcomes.

By addressing these points comprehensively, you will demonstrate not only a grasp of how to adapt the technical model but also the rationale for which measures become most important in a new location—and how to better balance visitor flows across multiple attractions.

Pregunta

用中文叙述一遍

Pensamiento

Thought about sustainable tourism model adaptation,持续 一秒

Respuesta

下面的思路可以帮助你从整体上阐述如何将在朱诺(Juneau)使用的模型,适配到另一个受到过度旅游影响的目的地(例如南京),以及地点差异会如何影响最重要的政策措施,并最终说明如何利用模型去推广较少游客到访的景点或地区,从而实现更好的旅游平衡。


一、将模型从朱诺迁移到其他地点时需关注的关键差异

  1. 环境背景差异

    • 在朱诺,主要关注冰川退缩、雨林和鲸鱼等生态脆弱要素。
    • 在南京(或其他城市/历史景区),则更需要关注:
      • 大气污染(如 PM2.5、氮氧化物等)
      • 历史文化遗产地的拥挤与保护压力
      • 城市交通拥堵、基础设施负荷
    • 结论:像“冰川拥挤度”这类指标,可以替换为“文化遗产地拥挤度”或类似的城市生态文化敏感度指标。
  2. 基础设施与文化差异

    • 在朱诺,基础设施扩建的重点可能是港口、码头等;
    • 在南京等大城市,需要更多关注地铁、公交系统、污水处理、城市供水等城市基础设施;
    • 文化遗产保护也可能是生态/文化子系统里的重要权重。
  3. 经济与社会结构差异

    • 对于像朱诺这样人口有限的社区,旅游业在本地 GDP 和就业中占比较高;
    • 在南京等大城市,旅游只是经济结构的一部分,要考虑其它产业对收入、就业、房价等的影响;
    • 需要针对本地的经济依赖程度和社会承载力,调整模型中经济子系统和社会子系统指标的权重、回归参数等。

总之,“三大子系统”(经济、社会、生态)及其耦合思想可以保留,但指标和权重必须根据新地点做针对性修改。


二、针对新地点(如南京)调整模型指标与回归关系

  1. 替换或调整核心指标

    • 冰川拥挤(Eco3) → 遗产/文化景点拥挤(Eco3')
      • 可以衡量景点实际日承载量、排队时长或人流密度;
    • 碳排放(Eco1)、污染指数(Eco2)
      • 对于大城市,可细分大气污染指标(如 PM2.5、SO2 等),或保留“综合污染指数”,但系数应基于城市数据重新拟合;
    • 拥堵指数(S2)
      • 从港口拥堵转为城市道路/公共交通拥堵,更贴近大城市现实。
  2. 重新拟合回归方程或关系式

    • 例如在朱诺模型中: Cong=3.74014+0.000416267×T+\text{Cong} = 3.74014 + 0.000416267 \times T + \dots 在南京就要用新的实地数据来估计“游客量增长对交通拥堵的影响系数”,“地铁和公交扩建对缓解拥堵的效果”等;
    • 其它类似公式(收入 vs. 投资 vs. 游客量)也需要换成本地统计局或研究机构提供的实证数据重新回归。
  3. 重新平衡耦合协调度中的权重

    • 例如,经济子系统( U_E )中,如果南京对旅游收入的依赖度相对整体 GDP 较低,则旅游相关收入(GovRev)的权重可相应变小;
    • 如果文化遗产保护在地方政府和居民意见中更重要,就可在生态子系统 (U_Eco) 中为“遗产地拥挤/损耗”赋予更高权重。

三、地点差异如何影响最重要的政策措施

  1. 限流与空间分流

    • 在朱诺,可能着重限流(最多同时停靠几艘邮轮);
    • 在南京等大城市,则更注重景点之间的客流引导
      • 例如,通过预约制、分时段售票或定价策略,让游客有意愿去“二线景点”,缓解“网红景点”极端拥堵。
  2. 基础设施投资

    • 朱诺侧重港口升级或生态步道建设;
    • 南京则更可能是增加公共交通运力、缓解老城区停车难、提升景区周边的泊车配套和卫生服务等。
  3. 文化遗产保护

    • 若南京非常重视古城墙、古刹、博物馆等的保护,在模型中就要把对文物古迹的冲击程度放到与“生态破坏”同等或更高的优先级里,甚至单列为一个主要指标。
  4. 污染与环境承载

    • 大城市的污染上限往往已经比较紧张,旅游带来的额外交通、住宿、餐饮等排放会更受关注;
    • 可能需要更严格的排放控制、或推行低排放旅游交通(如新能源大巴等)。

简而言之,各地的“生态承载要素”和“社会承载要素”不同,会使模型自动倾向不同的政策杠杆。例如,如果市民对噪音、污染敏感度高,模型就会更倾向减少市区内大规模集中旅游项目,转而推动“多点分散”政策。


四、利用模型推动游客向较少到访的景点或时段,以实现更好平衡

  1. 在模型中加入“分流”或“多样化”变量

    • 类似朱诺模型中的季节分流参数 x_div,可以改为“景点分流指标”或“淡旺季动态定价”指标;
    • 用以衡量对二线或新兴景点的推广投入、宣传力度及配套建设。
  2. 在社会和经济效益函数中,纳入“游客满意度”与“景点多样化”

    • 如果将部分游客引导到二线景区能使整体拥挤度下降,但要保证这些景点有一定吸引力、体验服务要跟上,否则会导致游客不满;
    • 通过增加“游客在二线景点的满意度”指标,或给它一定经济收益加成,来激励模型自动选择分流策略。
  3. 利用定价与差异化营销

    • 在经济子系统中,设置“差异化门票定价”或“浮动补贴”,让过度拥挤的景区价格略高,而人流偏少的景区有优惠或其它增值服务;
    • 这样模型可能会发现:在保持整体旅游收益的同时,分流部分客流反而能提升综合耦合协调度 D(拥挤下降、生态恶化减缓、社会满意度上升)。

从优化结果看,如果推广“游客流向相对空闲景区”的措施可以带来更高的综合得分,模型就会倾向于提高对这类措施的投资或权重,从而达成游客分散、多方共赢的良性循环。


五、在实际落地中如何做本地化定制

  1. 收集当地数据

    • 从当地统计局、文旅部门、环保部门收集各景区客流量、交通数据、环境数据等,替换或修正模型参数。
  2. 选取或剔除指标

    • 对南京不适用的指标剔除,比如“冰川拥挤”就换成“文化遗产地拥挤”;
    • 新增必要的城市指标,如“空气质量指数”“老城区日最大承载量”等。
  3. 重新拟合参数

    • 参考新的数据做回归或机器学习模型,得到不同决策变量(如 x_infra、x_env 等)对相关指标(污染度、社会拥堵、收益等)的真实影响系数。
  4. 进行多情景模拟

    • 例如测试“增加一倍对冷门景点的市场推广预算”或“对热门景点实施限流或涨价措施”的情景;
    • 查看不同情景下耦合协调度 (D)、经济收益 (GovRev)、污染水平 (Carbon / Pollution) 等的变化。
  5. 分析并选择平衡方案

    • 模型会生成一系列可行解;
    • 比如在某个解中,城市发现:适度提高热门景区票价、同时给二线景点补贴,使得整体拥堵、污染都下降,收益略有降低但 D 却上升到“良好协调”或“高度协调”水平,这种情形往往更可持续。

六、总结:打造对第二个问题的高质量回答要点

  1. 保留核心“三大子系统”与耦合理念:向评审或读者强调,模型的理论框架具有普适性,可在更换地点后依旧适用。
  2. 地理与社会优先级:阐述在大城市中,文化遗产保护、空气污染、城市拥堵等可能得到更高权重,从而影响最优政策选择。
  3. 分流与推广机制:详细说明如何设置分流政策变量(如分时预约、二线景区推广)以及它们在模型中的正面反馈。
  4. 投入与回报的闭环:展示如何使用“征收的附加费或游客税”来投入基础设施建设、遗产保护或二线景点提升,实现可持续的循环。
  5. 示例与结果:可以举一个简要例子或回归拟合结果来对比,比如“把游客从热门 A 景点转移到 B、C 景点后,耦合协调度显著提高”,来说明“平衡”带来的好处。

这样,你不仅展示了模型“如何改”,更展示了“为什么改”以及“改完之后如何帮助本地实现更加可持续的旅游业发展”。这就能很好地回答“地点的选择如何影响哪个措施最重要,以及如何通过模型推广游客较少的景点以实现更好的平衡”的问题。

Compartir este Q&A