Подмножества с последовательными числами
Creado el: 25 de enero de 2025
Creado el: 25 de enero de 2025
Formulating the problem
I’m analyzing subsets of the set {1,...,12} to find those with exactly one pair of consecutive numbers. This involves exploring all possible pairs and verifying the conditions for forming valid subsets.
Consulting Fibonacci
I’m recalling that the number of subsets of a set with no two consecutive elements is inferred from the Fibonacci sequence, particularly the (n+2)-th Fibonacci number.
Reaffirming the formula
I’m confirming that the formula f(n) = F_{n+2} applies for subsets of a set with no two consecutive elements, validating initial conditions and confirming the Fibonacci sequence relationship.
Identifying specific subsets
I’m calculating the total number of subsets of {1,...,12} with exactly one pair of consecutive elements, using an inclusion-exclusion principle to focus on subsets with exactly one pair.
Summing up possibilities
I’m determining subsets containing each consecutive pair (i, i+1) and ensuring exact one pair without double counting by checking no overlap exists with other pairs.
Ensuring unique adjacency
I’m ensuring subsets have only one pair of consecutive elements by excluding any additional consecutive elements that would create a second adjacency.
Mapping exclusions
I’m working through the exclusions for other consecutive pairs, ensuring subsets with exactly one pair of consecutive elements by systematically excluding pairs that would form additional or second adjacencies.
Segmenting the set
Considering the set {1,...,12}, pairs (i, i+1) exclude elements i-1 and i+2. Choosing from segments {1,..., i-2} and {i+3, ..., 12}, ensuring no adjacency.
Ensuring subset integrity
I’m piecing together the exclusion of pairs to maintain exactly one adjacency. For segments with fewer elements, counting the ways to select subsets without additional adjacencies is key.
Confirming segment sizes
OK, I’m checking the segment sizes and ensuring they fit the pattern. For example, segment 5 for i=1 is correct with 9 elements, leading to f(9) ways to choose subsets.
Piecing together the calculation
I’m mapping out the number of valid subsets for each i, ensuring segments are excluded correctly for exactly one adjacency, and confirming the final formula.
Confirming the formula
I’m verifying that for each i, excluding the correct segments, and using the Fibonacci sequence helps in finding the number of subsets with exactly one pair of consecutive elements.
Validating subsets
I’m ensuring the left block is empty for i=11, confirming exactly one way. For i from 2 to 10, avoiding invalid adjacent pairs guarantees valid subsets.
Confirming subset counts
Ensuring subset counts align with the Fibonacci sequence, specifying f(0)=1 and f(-1)=1, we verify for both i=1 and i=11.
Charting the course
I’m working through extending the Fibonacci sequence to negative indices, ensuring consistency with base cases and indirect reasoning, leading to calculating valid subsets for each i.
Crafting the function
I’m piecing together the piecewise definition of f(n) to count no-consecutive subsets, using Fibonacci numbers and considering base cases for extending to negative indices.
Summing calculated values
I’m pulling together the calculated values for each segment, ensuring careful addition to avoid errors and confirm the final sum. This method ensures accurate results.
Ensuring the final sum
Pairing the values methodically, I’m confirming the total as 744. This aligns with the logic checking that subsets are distributed between no adjacency, exactly one adjacency, and at least two adjacencies.
Laying out the options
I'm outlining a direct approach to count subsets with exactly one pair of adjacent elements, ensuring the total count aligns with the overall subset distribution and adjacency constraints.
Breaking down the subsets
I’m digging into subsets with exactly one pair of adjacent elements, applying the inclusion-exclusion principle for efficient calculation, and ensuring the count reflects the constraints.
Charting intersections
Mapping out intersections of subsets with two pairs of adjacent elements, calculating forced and free elements, and determining the total number of valid subsets for each case.
Mapping the pattern
I’m applying the inclusion-exclusion principle to count subsets with exactly one adjacency by addressing intersections of subsets with two pairs of adjacent elements.
Applying inclusion-exclusion
I’m using the inclusion-exclusion principle to focus on subsets with exactly one adjacency, cleverly avoiding overcounting by selectively excluding specific adjacent pairs to ensure accuracy.
Taking a closer look
I’m refining the approach using the inclusion-exclusion principle, focusing on subsets with exactly one adjacency by addressing potential overlaps with other adjacent pairs for each i.
Ensuring unique adjacencies
I’m confirming that for each i, side-by-side pairs are counted without overlapping adjacencies. Only distinctive subsets with exactly one adjacency are considered to avoid duplication.
Piecing together intersections
I’m calculating intersections with 4 distinct elements for side-by-side pairs and 3 for overlapping pairs. Valid subsets align with the adjacency constraints, ensuring each subset is unique.
Assessing direct methods
I’m concluding that the correct number of subsets with exactly one pair of adjacent elements is 744, after considering intersections and subsets with forced elements.
Testing a direct formula
Examining subsets of {1,2,3} with exactly one pair of adjacent elements. Listing subsets reveals exactly two valid subsets, providing insight into the direct formula's effectiveness for smaller sets.
Figuring out adjacency
I’m analyzing the general formula for subsets with exactly one adjacency, ensuring specific elements are excluded to maintain the constraint. The left and right blocks are carefully defined.
Crafting the formula
I’m detailing the two-block method, ensuring no adjacent elements are selected. This approach aims to derive a formula for subsets with exactly one adjacency.
Laying out the choices
I’m focusing on the set {1,2,3,4}, ensuring exactly one adjacency by excluding specific elements and calculating valid subsets with carefully chosen pairs.
Validating subset choices
I'm mapping out subsets with exactly one pair of adjacent elements for the set {1,2,3,4}, ensuring no additional adjacencies are formed when an element is chosen.
Affirming the formula
I validated the formula for subsets with exactly one adjacency, ensuring it aligns with direct calculations and confirms its correctness for n=12 and beyond.
Calculating and validating
I’m computing subsets with exactly one adjacency using the formula f(i-2) * f(10-i) for i from 1 to 11, validating the results by adding pairwise sums to ensure accuracy.
Thought about подмножества с последовательными числами for 1m 32s
Най удобнее всего решить задачу следующим способом:
Обозначения.
Пусть обозначает количество подмножеств множества из подряд идущих чисел (скажем, ), в которых нет ни одной пары соседних элементов. Известно (и легко проверить по рекуррентным соображениям), что
где — числа Фибоначчи с начальными условиями . При этом удобно дополнительно ввести соглашение и для корректной работы формул на краях.
Мы хотим найти число подмножеств множества , в которых ровно одна пара подряд идущих чисел. Обозначим такую пару за .
Если подмножество содержит пару , то:
Таким образом, при фиксированном мы «вычеркиваем» и (если они существуют) и оставшиеся элементы разбиваются на два независимых блока (слева и справа от пары ), в каждом из которых мы можем выбирать любые подмножества без соседних чисел.
Поскольку выбор в левом и правом блоке независим, число подмножеств при фиксированной паре (и ровно одной такой паре) равно
где понимаем при .
Возможные пары — это . Складываем соответствующие произведения:
Остаётся лишь подставить значения функции . Напомним, что
а также и .
Далее считаем пошагово:
Складываем все эти результаты:
Подмножеств множества , содержащих ровно одну пару последовательных чисел, 744.
Mapping the process
I'm working through the problem of finding the volume of the Minkowski sum of a regular tetrahedron with a unit ball by applying a known formula for convex sets in Euclidean 3D.
Evaluating volume growth
I’m calculating how the volume of a convex body K in 3D changes when expanded by a radius r, incorporating surface area, mean curvature, and a constant term.
Refining the formula
I’m refining the Minkowski expansion formula, specifically for polyhedra, by incorporating dihedral angles and vertex angles to accurately calculate volume changes with radius.
Evaluating volume expansion
I’m analyzing the volume expansion of a tetrahedron, considering the original volume, extrusions around surfaces and edges, and mean curvature, using the Steiner formula for accuracy.
Analyzing mean curvature integral
I'm piecing together the mean curvature integral for polyhedra, focusing on plane faces, edges, and angles. There’s a standard formula involving external angles and edge lengths.
Calculating polyhedron volume
I'm figuring out the polyhedron's volume by summing the original volume, face extrusions, and edge volumes shaped by circular sectors, simplifying the overall calculation.
Clarifying angles
I’m thinking through the polyhedron's angles, defining the exterior angle as and calculating the volume contributed by each edge using this angle.
Calculating edge contribution
I'm noting that the volume contributed by each edge of the polyhedron comes from the circular sector defined by the exterior angle , scaled by the edge length.
Mapping out corner expansions
I’m calculating the volume added at each vertex of the polyhedron, which comes from a spherical wedge with a solid angle , scaled by and .
Breaking down the volume calculation
I’m detailing that the total volume of the offset is the original volume plus the extruded areas of faces and edges, excluding expansions beyond the face regions.
Calculating vertex volumes
I'm working through the volume of spherical triangle wedges at each tetrahedron vertex, defined by the internal dihedral angles and excluded volumes from edge expansions.
Verifying volume formula
I’m confirming the volume formula for a regular tetrahedron with side length 1 as , ensuring it matches the specific case.
Piecing together details
I’m gathering the tetrahedron’s volume , surface area , and dihedral angle to calculate edge expansion volume.
Calculating vertex expansions
I'm figuring out the volume added by vertex expansions in a regular tetrahedron, which comes from the solid angle steradians.
Confirming the solid angle
I'm validating the solid angle at a tetrahedron vertex, which is , ensuring the value is approximately 0.551 steradians.
Assessing volume contributions
I’m piecing together that the tetrahedron's volume from vertex and edge expansions dissolves into simpler terms like the original volume and face extrusions, ultimately forming expressions with straightforward calculations.
Clarifying normal angles
I’m reinforcing that the angle between plane normals in a tetrahedron is consistently the dihedral angle , which is approximately 70.528779°.
Calculating spherical triangle area
I’m mapping out the area of a spherical triangle with side , derived from the dihedral angle between tetrahedron faces, using a known geometric formula.
Applying spherical law of cosines
I’m working through the spherical law of cosines to relate the angles and side lengths of a spherical triangle, aiming to determine the angle in terms of the side .
Unpacking the formula
I’m simplifying the spherical law of cosines to express the angle in terms of , and deriving the area of a spherical triangle as .
Confirming the angle
OK, let me see. I’m checking the angle using the cosines of , ensuring it fits within the tetrahedron’s vertex boundaries and matches the spherical triangle’s side .
Confirming the area and angle
I’m verifying the area of the spherical triangle as 0.81276 steradians and the angle as about 75.5225°, ensuring these values align with the tetrahedron’s geometry.
Verifying inward orientation
I’m checking that the inward normal orientation for tetrahedron faces confirms the interior points satisfying , ensuring the tetrahedron's correct geometry.
Confirming interior constraints
I’m ensuring points are correctly inside if for outward normal , confirming the tetrahedron's interior boundaries.
Figuring out volume
I’m piecing together the volume of a tetrahedron's vertex expansion, using the formula to get an expression for the volume.
Mapping vertex volumes
I'm summing each vertex's volume, using the given solid angle, and combining these with face and edge expansions. This helps in fully understanding the tetrahedron's volume expansion.
Piecing together the components
I’m calculating the volume from edge and vertex expansions, ensuring the solid angle and face contributions are accurate. Ultimately, these elements form a complete expression for the tetrahedron's volume.
Summing contributions
I’m calculating the tetrahedron's total volume by adding face, edge, and vertex expansion volumes, ensuring the final value approximates the combined volumes.
Evaluating edge expansion
I’m mapping out edge expansions as sectors with 1.9106 radians and radius 1. Each edge contributes to the total volume.
Verifying totals
I'm ensuring the combined volume, including face, edge, and vertex expansions, matches previous calculations. The consistent check is leading me to a succinct total of around 8.666.
Confirming final measurements
I’m piecing together the tetrahedron's final volume by meticulously summing face, edge, and vertex expansions, ensuring the calculations yield a precise volume of 8.665.
Ensuring overall consistency
Taking a moment to confirm the tetrahedron's expansion volume aligns with known convex body formulas. This involves checking the incorporation of mean curvature integrals and solid sphere volumes.
Thought about объем фигуры с тетраэдром for 1m 9s
Решение сводится к тому, что искомая фигура есть так называемая Минковская сумма правильного тетраэдра со стороной и шара радиуса . Другими словами, мы «толщаем» тетраэдр во все стороны на расстояние .
В классической трёхмерной геометрии объём такого «расширения» выпуклого многогранника удобно разбивать на несколько частей:
Далее последовательно суммируем объёмы этих частей.
Объём правильного тетраэдра со стороной равен
При получаем
Каждая грань — это равносторонний треугольник со стороной и площадью
У правильного тетраэдра грани, поэтому полная площадь поверхности
«Выдавливаем» каждую грань на расстояние по наружной нормали, получая призму высотой . Объём призмы равен «площадь грани высота», а суммарно по всем граням:
После «выдавливания» граней около каждого ребра остаётся недостающий участок, который в сечении перпендикулярно ребру выглядит как сектор окружности радиуса .
Площадь такого кругового сектора радиуса с углом равна
Умножая на длину ребра , получаем объём «клин» вокруг данного ребра. Итого, суммарный объём по всем рёбрам:
Численно это примерно
Наконец, у каждой вершины «достраивается» сферический «уголок» радиуса . Этот уголок — часть шара, вырезанная тремя гранями, сходящимися в вершине, и вырезанная уже учтёнными «призмами» и «цилиндрическими секторами».
Эквивалентно можно считать, что это участок единичной сферы, соответствующий триэдральному углу при вершине. Размер этого участка на сфере измеряется телесным углом . Тогда объём соответствующего «шаровому сектора» есть
Остаётся найти — телесный угол при вершине правильного тетраэдра. Известно (или выводится через законы сферической геометрии), что если — диэдральный угол между любыми двумя гранями, то три внешние нормали к граням образуют на сфере равносторонний сферический треугольник со стороной . Пусть — угол этого сферического треугольника при каждой вершине на сфере; тогда его площадь (в sterad) равна
Чтобы найти , применяют сферический «закон косинусов для сторон»: в равностороннем треугольнике сторона и угол связаны формулой
При имеем , откуда
Тогда площадь сферического треугольника
Именно эта площадь (в стерадианах) и есть телесный угол при вершине тетраэдра.
Следовательно, объём «шарового сектора» около одной вершины равен
а так как у тетраэдра вершины, суммарно по всем вершинам
Складываем вклад от всех четырёх типов «слоёв»:
В сумме получаем примерно
Окончательно, с учётом требования округлить при необходимости до трёх знаков после запятой, объём равен