Dataset Preprocessing and Imbalance

Creado el: 24 de enero de 2025

Respondido usando O1 por Chat01

Pregunta

Analyze CODE that i used for my dataset and OUTPUT from CODE. By analyzing everything. Write me code for Preprocessing steps: cleaning, normalization, etc. and Visualize class imbalance (e.g., using a bar plot). DEEPLY ANALYZE EVERYTHING AND DO Preprocessing steps: cleaning, normalization, etc. and Visualize class imbalance


CODE : {
import pandas as pd

# Replace 'your_dataset.csv' with the path to your CSV file
csv_file_path = 'your_dataset.csv'

# 1. Load CSV
df = pd.read_csv(csv_file_path, low_memory=False) # low_memory=False helps with large files

# 2. Basic dataset information
print("Dataset Dimensions (rows, columns):", df.shape)
print("\nColumn Names:\n", df.columns.tolist())

# 3. Data Types of Each Column
print("\nColumn Data Types:\n", df.dtypes)

# 4. Basic Info (including non-null counts)
print("\nDataFrame Info:")
df.info()

# 5. Statistics (numerical and non-numerical)
# 'include="all"' shows stats for both numeric and object type columns
print("\nDescriptive Statistics (including object columns):")
print(df.describe(include='all'))

# 6. Missing Values Check
missing_values = df.isnull().sum()
print("\nNumber of Missing Values per Column:\n", missing_values)

# 7. (Optional) Quick Look at First Few Rows
print("\nFirst 5 Rows of the Dataset:")
print(df.head())

# 8. (Optional) Quick Look at Last Few Rows
print("\nLast 5 Rows of the Dataset:")
print(df.tail())

# 9. (Optional) Count of Unique Values in Each Column
unique_counts = df.nunique()
print("\nNumber of Unique Values per Column:\n", unique_counts)
}

OUTPUT : {
Dataset Dimensions (rows, columns): (355630, 86)

Column Names:
['Unnamed: 0', 'Flow ID', ' Source IP', ' Source Port', ' Destination IP', ' Destination Port', ' Protocol', ' Timestamp', ' Flow Duration', ' Total Fwd Packets', ' Total Backward Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', ' Fwd Packet Length Std', 'Bwd Packet Length Max', ' Bwd Packet Length Min', ' Bwd Packet Length Mean', ' Bwd Packet Length Std', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Std', ' Bwd IAT Max', ' Bwd IAT Min', 'Fwd PSH Flags', ' Bwd PSH Flags', ' Fwd URG Flags', ' Bwd URG Flags', ' Fwd Header Length', ' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length', ' Max Packet Length', ' Packet Length Mean', ' Packet Length Std', ' Packet Length Variance', 'FIN Flag Count', ' SYN Flag Count', ' RST Flag Count', ' PSH Flag Count', ' ACK Flag Count', ' URG Flag Count', ' CWE Flag Count', ' ECE Flag Count', ' Down/Up Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', ' Avg Bwd Segment Size', ' Fwd Header Length.1', 'Fwd Avg Bytes/Bulk', ' Fwd Avg Packets/Bulk', ' Fwd Avg Bulk Rate', ' Bwd Avg Bytes/Bulk', ' Bwd Avg Packets/Bulk', 'Bwd Avg Bulk Rate', 'Subflow Fwd Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Packets', ' Subflow Bwd Bytes', 'Init_Win_bytes_forward', ' Init_Win_bytes_backward', ' act_data_pkt_fwd', ' min_seg_size_forward', 'Active Mean', ' Active Std', ' Active Max', ' Active Min', 'Idle Mean', ' Idle Std', ' Idle Max', ' Idle Min', 'Label']

Column Data Types:
Unnamed: 0 int64
Flow ID object
Source IP object
Source Port int64
Destination IP object
...
Idle Mean float64
Idle Std float64
Idle Max float64
Idle Min float64
Label object
Length: 86, dtype: object

DataFrame Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 355630 entries, 0 to 355629
Data columns (total 86 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Unnamed: 0 355630 non-null int64
1 Flow ID 355629 non-null object
2 Source IP 355630 non-null object
3 Source Port 355630 non-null int64
4 Destination IP 355630 non-null object
5 Destination Port 355630 non-null float64
6 Protocol 355630 non-null float64
7 Timestamp 355630 non-null object
8 Flow Duration 355630 non-null int64
9 Total Fwd Packets 355630 non-null int64
10 Total Backward Packets 355630 non-null int64
11 Total Length of Fwd Packets 355630 non-null float64
12 Total Length of Bwd Packets 355630 non-null float64
13 Fwd Packet Length Max 355630 non-null float64
14 Fwd Packet Length Min 355630 non-null float64
15 Fwd Packet Length Mean 355630 non-null float64
16 Fwd Packet Length Std 355630 non-null float64
17 Bwd Packet Length Max 355630 non-null float64
18 Bwd Packet Length Min 355630 non-null float64
19 Bwd Packet Length Mean 355630 non-null float64
20 Bwd Packet Length Std 355630 non-null float64
21 Flow Bytes/s 355630 non-null float64
22 Flow Packets/s 355630 non-null float64
23 Flow IAT Mean 355630 non-null float64
24 Flow IAT Std 355630 non-null float64
25 Flow IAT Max 355630 non-null float64
26 Flow IAT Min 355630 non-null float64
27 Fwd IAT Total 355630 non-null float64
28 Fwd IAT Mean 355630 non-null float64
29 Fwd IAT Std 355630 non-null float64
30 Fwd IAT Max 355630 non-null float64
31 Fwd IAT Min 355630 non-null float64
32 Bwd IAT Total 355630 non-null float64
33 Bwd IAT Mean 355630 non-null float64
34 Bwd IAT Std 355630 non-null float64
35 Bwd IAT Max 355630 non-null float64
36 Bwd IAT Min 355630 non-null float64
37 Fwd PSH Flags 355630 non-null float64
38 Bwd PSH Flags 355630 non-null float64
39 Fwd URG Flags 355630 non-null int64
40 Bwd URG Flags 355630 non-null int64
41 Fwd Header Length 355630 non-null int64
42 Bwd Header Length 355630 non-null int64
43 Fwd Packets/s 355630 non-null float64
44 Bwd Packets/s 355629 non-null float64
45 Min Packet Length 355629 non-null float64
46 Max Packet Length 355629 non-null float64
47 Packet Length Mean 355629 non-null float64
48 Packet Length Std 355629 non-null float64
49 Packet Length Variance 355629 non-null float64
50 FIN Flag Count 355629 non-null float64
51 SYN Flag Count 355629 non-null float64
52 RST Flag Count 355629 non-null float64
53 PSH Flag Count 355629 non-null float64
54 ACK Flag Count 355629 non-null float64
55 URG Flag Count 355629 non-null float64
56 CWE Flag Count 355629 non-null object
57 ECE Flag Count 355628 non-null float64
58 Down/Up Ratio 355628 non-null object
59 Average Packet Size 355627 non-null float64
60 Avg Fwd Segment Size 355627 non-null float64
61 Avg Bwd Segment Size 355627 non-null float64
62 Fwd Header Length.1 355627 non-null float64
63 Fwd Avg Bytes/Bulk 355627 non-null object
64 Fwd Avg Packets/Bulk 355626 non-null float64
65 Fwd Avg Bulk Rate 355626 non-null float64
66 Bwd Avg Bytes/Bulk 355626 non-null float64
67 Bwd Avg Packets/Bulk 355626 non-null float64
68 Bwd Avg Bulk Rate 355626 non-null float64
69 Subflow Fwd Packets 355626 non-null float64
70 Subflow Fwd Bytes 355626 non-null float64
71 Subflow Bwd Packets 355626 non-null float64
72 Subflow Bwd Bytes 355626 non-null float64
73 Init_Win_bytes_forward 355626 non-null float64
74 Init_Win_bytes_backward 355626 non-null float64
75 act_data_pkt_fwd 355626 non-null float64
76 min_seg_size_forward 355626 non-null float64
77 Active Mean 355626 non-null float64
78 Active Std 355626 non-null float64
79 Active Max 355626 non-null float64
80 Active Min 355626 non-null float64
81 Idle Mean 355626 non-null float64
82 Idle Std 355626 non-null float64
83 Idle Max 355626 non-null float64
84 Idle Min 355626 non-null float64
85 Label 355630 non-null object
dtypes: float64(69), int64(9), object(8)
memory usage: 233.3+ MB

Descriptive Statistics (including object columns):
Unnamed: 0 Flow ID Source IP Source Port \
count 355630.000000 355629 355630 3.556300e+05
unique NaN 176955 2536 NaN
top NaN 8.0.6.4-8.6.0.1-0-0-0 10.42.0.211 NaN
freq NaN 2097 178753 NaN
mean 1945.719231 NaN NaN 3.914129e+04
std 1840.477646 NaN NaN 1.794632e+04
min 0.000000 NaN NaN 0.000000e+00
25% 640.000000 NaN NaN 3.455900e+04
50% 1568.000000 NaN NaN 4.322600e+04
75% 2718.000000 NaN NaN 5.228300e+04
max 14157.000000 NaN NaN 1.045267e+06

Destination IP Destination Port Protocol Timestamp \
count 355630 3.556300e+05 355630.000000 355630
unique 4746 NaN NaN 72218
top 10.42.0.1 NaN NaN 30/06/2017 01:14:36
freq 67213 NaN NaN 135
mean NaN 5.202541e+03 9.765190 NaN
std NaN 1.452135e+04 750.541237 NaN
min NaN 0.000000e+00 0.000000 NaN
25% NaN 8.000000e+01 6.000000 NaN
50% NaN 4.430000e+02 6.000000 NaN
75% NaN 4.430000e+02 6.000000 NaN
max NaN 1.328159e+06 442719.666667 NaN

Flow Duration Total Fwd Packets ... min_seg_size_forward \
count 3.556300e+05 355630.000000 ... 3.556260e+05
unique NaN NaN ... NaN
top NaN NaN ... NaN
freq NaN NaN ... NaN
mean 1.092975e+07 7.433718 ... -2.831850e+04
std 2.180861e+07 81.015658 ... 5.543875e+06
min -1.000000e+00 0.000000 ... -1.395063e+09
25% 4.888600e+04 1.000000 ... 2.000000e+01
50% 5.602255e+05 2.000000 ... 3.200000e+01
75% 1.076907e+07 5.000000 ... 3.200000e+01
max 1.199999e+08 27165.000000 ... 1.705248e+08

Active Mean Active Std Active Max Active Min Idle Mean \
count 3.556260e+05 3.556260e+05 3.556260e+05 3.556260e+05 3.556260e+05
unique NaN NaN NaN NaN NaN
top NaN NaN NaN NaN NaN
freq NaN NaN NaN NaN NaN
mean 1.628143e+05 2.195225e+04 1.851564e+05 1.456534e+05 4.025724e+06
std 8.817765e+05 2.860244e+05 1.019477e+06 8.423659e+05 1.441518e+07
min 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
25% 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
50% 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
75% 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
max 9.718488e+07 4.020815e+07 9.718488e+07 9.718488e+07 1.199514e+08

Idle Std Idle Max Idle Min Label
count 3.556260e+05 3.556260e+05 3.556260e+05 355630
unique NaN NaN NaN 4
top NaN NaN NaN Android_Adware
freq NaN NaN NaN 147443
mean 3.182527e+05 4.304876e+06 3.779037e+06 NaN
std 2.882901e+06 1.514008e+07 1.407042e+07 NaN
min 0.000000e+00 0.000000e+00 0.000000e+00 NaN
25% 0.000000e+00 0.000000e+00 0.000000e+00 NaN
50% 0.000000e+00 0.000000e+00 0.000000e+00 NaN
75% 0.000000e+00 0.000000e+00 0.000000e+00 NaN
max 7.737303e+07 1.199514e+08 1.199514e+08 NaN

[11 rows x 86 columns]

Number of Missing Values per Column:
Unnamed: 0 0
Flow ID 1
Source IP 0
Source Port 0
Destination IP 0
..
Idle Mean 4
Idle Std 4
Idle Max 4
Idle Min 4
Label 0
Length: 86, dtype: int64

First 5 Rows of the Dataset:
Unnamed: 0 Flow ID Source IP \
0 0 172.217.6.202-10.42.0.211-443-50004-6 10.42.0.211
1 1 172.217.6.202-10.42.0.211-443-35455-6 10.42.0.211
2 2 131.253.61.68-10.42.0.211-443-51775-6 10.42.0.211
3 3 131.253.61.68-10.42.0.211-443-51775-6 10.42.0.211
4 4 131.253.61.68-10.42.0.211-443-51776-6 10.42.0.211

Source Port Destination IP Destination Port Protocol \
0 50004 172.217.6.202 443.0 6.0
1 35455 172.217.6.202 443.0 6.0
2 51775 131.253.61.68 443.0 6.0
3 51775 131.253.61.68 443.0 6.0
4 51776 131.253.61.68 443.0 6.0

Timestamp Flow Duration Total Fwd Packets ... \
0 13/06/2017 11:52:39 37027 1 ...
1 13/06/2017 11:52:39 36653 1 ...
2 13/06/2017 11:52:42 534099 8 ...
3 13/06/2017 11:52:43 9309 3 ...
4 13/06/2017 11:52:42 19890496 8 ...

min_seg_size_forward Active Mean Active Std Active Max Active Min \
0 32.0 0.0 0.0 0.0 0.0
1 32.0 0.0 0.0 0.0 0.0
2 20.0 0.0 0.0 0.0 0.0
3 20.0 0.0 0.0 0.0 0.0
4 20.0 0.0 0.0 0.0 0.0

Idle Mean Idle Std Idle Max Idle Min Label
0 0.0 0.0 0.0 0.0 Android_Adware
1 0.0 0.0 0.0 0.0 Android_Adware
2 0.0 0.0 0.0 0.0 Android_Adware
3 0.0 0.0 0.0 0.0 Android_Adware
4 0.0 0.0 0.0 0.0 Android_Adware

[5 rows x 86 columns]

Last 5 Rows of the Dataset:
Unnamed: 0 Flow ID Source IP \
355625 405 172.217.7.14-10.42.0.211-80-38405-6 172.217.7.14
355626 406 10.42.0.211-10.42.0.1-7632-53-17 10.42.0.211
355627 407 10.42.0.211-104.192.110.245-45970-443-6 10.42.0.211
355628 408 10.42.0.211-10.42.0.1-51982-53-17 10.42.0.211
355629 409 10.42.0.211-10.42.0.1-9320-53-17 10.42.0.211

Source Port Destination IP Destination Port Protocol \
355625 80 10.42.0.211 38405.0 6.0
355626 7632 10.42.0.1 53.0 17.0
355627 45970 104.192.110.245 443.0 6.0
355628 51982 10.42.0.1 53.0 17.0
355629 9320 10.42.0.1 53.0 17.0

Timestamp Flow Duration Total Fwd Packets ... \
355625 17/06/2017 01:29:11 126711 1 ...
355626 17/06/2017 01:30:33 48012 1 ...
355627 17/06/2017 01:29:45 20028018 11 ...
355628 17/06/2017 01:29:45 347926 1 ...
355629 17/06/2017 01:30:33 125473 1 ...

min_seg_size_forward Active Mean Active Std Active Max \
355625 32.0 0.0 0.0 0.0
355626 32.0 0.0 0.0 0.0
355627 20.0 367528.0 0.0 367528.0
355628 20.0 0.0 0.0 0.0
355629 32.0 0.0 0.0 0.0

Active Min Idle Mean Idle Std Idle Max Idle Min Label
355625 0.0 0.0 0.0 0.0 0.0 Benign
355626 0.0 0.0 0.0 0.0 0.0 Benign
355627 367528.0 19660490.0 0.0 19660490.0 19660490.0 Benign
355628 0.0 0.0 0.0 0.0 0.0 Benign
355629 0.0 0.0 0.0 0.0 0.0 Benign

[5 rows x 86 columns]

Number of Unique Values per Column:
Unnamed: 0 14158
Flow ID 176955
Source IP 2536
Source Port 51343
Destination IP 4746
...
Idle Mean 39823
Idle Std 8887
Idle Max 39789
Idle Min 39784
Label 4
Length: 86, dtype: int64
}

Pensamiento

Examining dataset characteristics

I noticed an "Unnamed: 0" column and missing values in some columns. Progress is steady as I begin to address data preprocessing and visualization needs.

Identifying gaps

I found multiple columns with single missing values, including "Flow ID" and packet-related columns, as well as multiple rows in "CWE Flag Count" due to dtype object issues.

Investigation and adjustments

I'm piecing together insights on missing values in various columns and examining anomalies like negative values in "Flow Duration" and unusually high values in "Protocol." Adjustments will follow.

Refining the dataset

I’m refining the dataset by removing empty or duplicate columns, converting object types to numeric, and addressing missing or negative values. Finally, I’ll normalize numeric columns and visualize 'Label' distribution.

Refining and visualizing

I’m refining the dataset by removing artifacts like "Unnamed: 0," renaming columns, and managing missing values. Finally, I’ll visualize 'Label' distribution with a bar plot using Seaborn or Matplotlib.

Thought about dataset analysis and preprocessing for 10 seconds

Respuesta

Below is an example of how you can perform a deep preprocessing of your dataset and visualize class imbalance. The code is commented step-by-step, explaining what is being done and why. Feel free to adjust it to the particularities of your data and project requirements.


1. Analysis of Your Dataset

From your output, here are some key observations:

  1. Dimensions:

    • The dataset has 355,630 rows and 86 columns.
    • There is an Unnamed: 0 column that looks like an extra index (often created when saving or merging datasets). This can typically be dropped if it has no analytical value.
  2. Missing Values:

    • Several columns have a small number of missing values (mostly 1-4 missing). For example,
      • Flow ID has 1 missing value,
      • Bwd Packets/s has 1 missing value,
      • Some columns like CWE Flag Count or Down/Up Ratio may have a couple of missing or invalid values and are stored as object instead of numeric.
    • We’ll need to decide whether to drop or fill these missing values.
  3. Data Types:

    • Most columns are correctly identified as float64 or int64.
    • A few columns are object but actually contain numeric data (e.g., CWE Flag Count, Down/Up Ratio, Fwd Avg Bytes/Bulk). We should convert them to numeric types.
    • Flow ID is an ID-like column. Often, flow IDs, IP addresses, or timestamps are not directly used as numeric features for machine learning. They can be dropped unless you need them for a specific purpose.
  4. Possible Anomalies:

    • Some numeric columns show a minimum value of -1 or negative (e.g., Flow Duration has min = -1). You may need to remove or investigate negative or otherwise impossible values.
    • Check for infinite or extremely large values in Flow Bytes/s or similarly derived rates that can happen if the duration is near zero.
  5. Label Distribution:

    • The Label column has 4 unique values. From the descriptive statistics:
      • The unique labels are something like: Android_Adware, Benign, etc.
      • Android_Adware has the highest frequency (147443).
    • We typically want to visualize the class imbalance to understand how many samples each class has.

2. Example Preprocessing and Visualization Code

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler, StandardScaler # ---------------------------------------------------------------------------------- # 1. LOAD DATA # Replace 'your_dataset.csv' with your actual file path if needed. # ---------------------------------------------------------------------------------- df = pd.read_csv('your_dataset.csv', low_memory=False) # ---------------------------------------------------------------------------------- # 2. BASIC CLEANING # ---------------------------------------------------------------------------------- # (A) Drop or rename the 'Unnamed: 0' column if it is just an extra index. if 'Unnamed: 0' in df.columns: df.drop(columns=['Unnamed: 0'], inplace=True) # (B) Strip any leading/trailing spaces in column names (some columns have spaces). df.columns = [col.strip() for col in df.columns] # (C) Check for duplicates and remove them, if it makes sense for your domain. df.drop_duplicates(inplace=True) # (D) Convert columns that should be numeric but are read as object. # Identify which columns are supposed to be numeric. Below is an example list # based on your DataFrame info. Adjust as needed. columns_to_convert = [ 'CWE Flag Count', 'Down/Up Ratio', 'Fwd Avg Bytes/Bulk', 'Fwd Avg Packets/Bulk', 'Fwd Avg Bulk Rate', 'Bwd Avg Bytes/Bulk', 'Bwd Avg Packets/Bulk', 'Bwd Avg Bulk Rate' ] for col in columns_to_convert: if col in df.columns: df[col] = pd.to_numeric(df[col], errors='coerce') # errors='coerce' turns invalid parsing into NaN # (E) Re-check for missing values after conversions missing_values = df.isnull().sum() print("Missing values after type conversions:\n", missing_values) # (F) Handle missing values. # Given that the dataset is quite large and only a few rows have NaNs, # a common approach is to drop rows with any missing values. Alternatively, # you can fill them with means/medians if that makes sense for your domain. df.dropna(inplace=True) # (G) Remove or fix invalid numeric values (e.g., negative flow durations). # For instance, if Flow Duration < 0 is invalid, drop those rows: if 'Flow Duration' in df.columns: df = df[df['Flow Duration'] >= 0] # ---------------------------------------------------------------------------------- # 3. FEATURE SELECTION (OPTIONAL) # ---------------------------------------------------------------------------------- # Often we drop columns that are IDs, IP addresses, or Timestamps that aren’t # meant to be used as numeric features (they won’t help classification/regression # models in typical flow-based analyses). Keep them if you want time-based splits. columns_to_drop = ['Flow ID', 'Source IP', 'Destination IP', 'Timestamp'] for col in columns_to_drop: if col in df.columns: df.drop(columns=[col], inplace=True) # ---------------------------------------------------------------------------------- # 4. NORMALIZATION / SCALING # ---------------------------------------------------------------------------------- # Typically you separate out your target variable (e.g., 'Label'). # Then apply scaling to numeric features only. if 'Label' in df.columns: labels = df['Label'] df.drop(columns=['Label'], inplace=True) else: labels = None # Example: Using MinMaxScaler OR StandardScaler on numeric features numeric_cols = df.select_dtypes(include=[np.number]).columns # You can choose either scaler depending on your approach: # scaler = MinMaxScaler() # Scales each feature to [0, 1] scaler = StandardScaler() # Transforms each feature to have 0 mean, unit variance df[numeric_cols] = scaler.fit_transform(df[numeric_cols]) # (Re)Attach the label column at the end df['Label'] = labels # ---------------------------------------------------------------------------------- # 5. CLASS IMBALANCE VISUALIZATION # ---------------------------------------------------------------------------------- # Plot a bar chart of the counts for each label. plt.figure(figsize=(6,4)) sns.countplot(data=df, x='Label', order=df['Label'].value_counts().index) plt.title("Class Distribution (Label)") plt.xlabel("Label") plt.ylabel("Count") plt.xticks(rotation=45) plt.tight_layout() plt.show() # Alternatively, just using pandas: # df['Label'].value_counts().plot(kind='bar') # plt.show() # Now you have a cleaned, scaled dataframe, and a visualization of class imbalance. # ---------------------------------------------------------------------------------- # Print final info print("\nDataFrame shape after preprocessing:", df.shape) print("\nData Sample:") print(df.head())

3. Explanation of Key Steps

  1. Drop Unnamed: 0:
    This column often appears if you saved a DataFrame with index=True previously. If it holds no valuable information, remove it.

  2. Trim Column Names:
    Some columns had leading/trailing spaces (e.g., " Source IP"). This can cause confusion when referencing columns.

  3. Drop Duplicates:
    Ensures each row is unique if you do not want repeated flows. Decide if duplicates are truly duplicates or different segments of the same flow.

  4. Convert object -> float:
    Columns like CWE Flag Count, Down/Up Ratio were read as object. Converting them to numeric ensures you can do mathematical operations or scaling on them. errors='coerce' will turn any non-parsable values into NaN, which you can handle later.

  5. Handle Missing Values:
    A small number of missing values can simply be dropped in a large dataset, unless there is a domain reason to fill them. Alternatively, you can fill with mean/median.

  6. Remove Invalid Values:
    Negative Flow Duration is likely invalid. Dropping or setting them to zero depends on domain knowledge.

  7. Feature Selection:
    Some columns like Flow ID, Timestamp, or IP addresses are rarely used directly as features in typical classification tasks. Removing them can reduce noise.

  8. Scaling:

    • Min-Max Normalization: Rescales each numeric feature to a [0,1] range.
    • Standardization: Transforms data to have zero mean and unit variance (Z-score).
      Choose based on your modeling approach or compare both.
  9. Class Imbalance Visualization:

    • A countplot from Seaborn or a simple Pandas value_counts().plot(kind='bar') helps confirm if you have a skewed distribution among classes (e.g., most samples might be Android_Adware, fewer from other malware families, or Benign traffic).

Final Notes

  • Further processing might include outlier removal, dimensionality reduction (PCA), or advanced feature engineering.
  • Carefully verify that negative or zero durations / packet counts are indeed erroneous. Sometimes they result from packet captures or merges with time offsets.
  • If your classification task is heavily imbalanced, consider advanced sampling techniques (e.g., SMOTE, undersampling, oversampling) to mitigate class imbalance.

With this outline, you should have a cleaner, more consistent dataset ready for machine learning pipelines, and a clear visualization of class distribution. Adjust specific steps (columns to drop, threshold for missing values, normalization approach) to match your project’s needs.

Compartir este Q&A