气球飞行最大高度

Creado el: 22 de enero de 2025

Respondido usando O1 por Chat01

Pregunta

球形氢气球初始半径为1.68 m,表皮材料对氢气的渗透率为3.78×10^-^1^2 mol/(m·s·Pa),初始内部氢气纯度为96.2%。假设环境满足:

  1. 大气压强P(z)=100125×e^(-z/8500) Pa,z为海拔高度(m)
  2. 空气温度T(z)=288.15-0.0055z (K)
  3. 水平风速v(z)=12×ln(1+z/28.35) m/s
  4. 氢气泄漏速率满足菲克定律,表皮承受的应力σ= (P_int - P_ext)×r/(2t),当σ≥16.8 MPa时气球破裂(t=33 μm为表皮厚度)
  5. 已知初始位置λ_0=100°E, φ_0=22°N,地球自转角速度Ω=7.292×10^-^5 rad/s

请计算:在考虑气体扩散、热膨胀、流体阻力、材料失效的条件下,气球保持完整飞行的理论最大海拔高度及对应坐标点(经度λ, 纬度φ)。

Pensamiento

Analyzing environmental conditions

I'm thinking through the environmental conditions affecting the balloon's integrity, such as atmospheric pressure, temperature, and wind speed, which influence hydrogen leakage and balloon stress.

Determining balloon dynamics

I'm calculating the balloon's maximum altitude using volume, hydrogen pressure, and stress. This involves integrating buoyancy, dynamic lift, hydrogen loss rate, and pressure changes.

Assessing balloon dynamics

I'm figuring out the altitude where the balloon's stress, caused by pressure differences and hydrogen leakage, hits 16.8 MPa, leading to its potential failure.

Adjusting my approach

I'm assuming the balloon stays in thermal equilibrium with its surroundings. Considering Fick's law for hydrogen flux and adjusting for membrane permeation flux to estimate changes.

Calculating hydrogen loss

I’m mapping out the rate of hydrogen loss by considering the membrane area and gas partial pressure, adjusting for balloon purity and minimal external influence.

Adjusting my strategy

I'm weighing whether the balloon's ascent results from net buoyant force or stress-induced bursting, considering the balance between lifting gas and structural capacity.

Determining critical pressure

I’m piecing together that the balloon's internal pressure needs to be carefully managed to avoid exceeding 16.8 MPa, which would cause it to burst due to stress from the pressure difference.

Weighing approaches

I'm considering a simplified method where internal pressure equals external pressure, avoiding stress. However, the balloon likely maintains minor overpressure to sustain its shape.

Examining balloon dynamics

I’m digging into a high-altitude balloon with an initial radius of 1.68 m and a thickness of 33 microns. It drifts horizontally at 12 ln(1+z/28.35) m/s, tracing its final coordinates through integration.

Assessing altitude limits

Typical weather balloons reach 25-30 km, with pressure difference around 0.03 atm. Considering the Coriolis effect and environmental factors, this aligns with expected parameters.

Evaluating pressure dynamics

Balancing internal and external pressures is crucial to prevent stress from exceeding 16.8 MPa, considering the balloon's flexibility and need to expand.

Charting pressure dynamics

Tracking how expanding the balloon affects internal and external pressures, aiming to keep stress minimal and manageable within the balloon's capacity.

Calculating pressure tolerance

I'm mapping out that if the balloon's stress tolerance is set to 16.8 MPa, the pressure difference, (P_int - P_ext), is inversely proportional to the balloon's radius.

Pinpointing hydrogen storage

Calculating the initial volume and moles of hydrogen, I found the balloon has roughly 19.88 cubic meters at the ground and 0.962 partial pressure for hydrogen.

Assessing hydrogen content

I calculated the number of moles and mass of hydrogen in the balloon, indicating approximately 809 moles and 1.62 kg, assuming 96.2% hydrogen purity and standard conditions.

Examining pressure dynamics

Considering how the balloon's radius reacts to altitude-induced pressure changes, aiming to prevent stress from surpassing the critical threshold of 16.8 MPa.

Assessing leakage and pressure

I'm examining the ideal gas law to understand how hydrogen leakage and external pressure affect the balloon's internal pressure as it ascends.

Evaluating failure scenarios

I'm thinking about the balloon's theoretical maximum altitude, where the stress reaches 16.8 MPa, and the scenarios leading to its failure due to stress or hydrogen leakage.

Mapping out the altitude

I’ll determine the altitude where the balloon stops rising by correlating pressure differences, buoyant and net weights, and aligning with the stress threshold of 16.8 MPa.

Balancing forces

I’m working through equating buoyant force with total weight to pinpoint the balloon's maximum altitude while ensuring it stays below the stress threshold of 16.8 MPa.

Estimating balloon mass

I'm assuming the balloon's material density is 1000 kg/m^3 to calculate its mass at 1.68 m radius, leading to a rough estimate of the skin's volume and total mass.

Tracking material behavior

I’m evaluating whether the balloon uses an inelastic or elastic membrane. An inelastic one keeps radius constant, spiking internal pressure and potentially causing bursting.

Simplifying calculations

I’m examining the balloon's buoyancy and mass, aiming to determine if it can achieve a 30 km altitude without diffusion effects, to understand its maximum ascent potential.

Calculating net buoyancy

Taking into account the displaced air mass and hydrogen mass, I’m figuring out the net buoyancy to understand if the balloon can lift off or if its ascent is top-heavy.

Evaluating net buoyancy

I’m examining net buoyancy by comparing displaced air mass with the balloon and hydrogen masses, assuming equilibrium and constant moles to find the balloon's lift capacity.

Adjusting my approach

Piecing together net buoyancy by considering displaced air mass, the balloon's weight, and constant moles. Simplifying the expression, I aim to understand the net force driving the balloon's ascent.

Adjusting my calculations

I'm thinking through the use of the ideal gas law with the universal gas constant to accurately analyze the balloon's net buoyancy and lift capabilities, ensuring all components are properly accounted for.

Estimating net lift

I’m computing the net lift by subtracting the balloon's weight from the buoyant force, assuming constant moles and taking into account the displaced air mass and hydrogen weight.

Ensuring buoyancy

I'm recalculating net lift by breaking down air and hydrogen masses, ensuring the balloon has a clear upward force of 202.59 N, confirming positive buoyancy at sea level.

Demonstrating buoyancy

I’ve shown that the balloon's net lift remains steady with altitude and temperature changes, as the displaced air mass and net buoyancy are consistent.

Tracing buoyancy dynamics

If internal and external gases are at the same temperature and pressure, the net buoyancy from the gas remains constant, even as the balloon ascends and external conditions shift.

Weighing lift feasibility

Analyzing if the balloon can maintain lift as it rises, factoring in stress limits and gas leak dynamics to ensure continuous ascent and payload capacity.

Evaluating balloon dynamics

I'm mapping out the balloon's volume at 30 km altitude, factoring in external pressure and significant cooling, to ensure practicality and feasibility for continued ascent and payload carry.

Assessing balloon potential

I'm working through the balloon's volume and radius at 30 km altitude, keeping in mind the balloon's flexibility and the external pressure, to determine if it can sustain its shape with the given pressure difference.

Confirming differences

I’m mapping out the pressure difference and balloon radius using the ideal gas law, finding close alignment with earlier calculations, and refining the stress evaluation as the balloon ascends.

Calculating stress levels

I’m figuring out the balloon's stress at 30 km, ensuring it matches the bursting condition of 16.8 MPa, and starting to think about hydrogen loss from diffusion.

Calculating hydrogen loss

I'm estimating hydrogen loss during ascent, using flux and partial pressure differences, to see if it impacts the balloon's ability to reach 30 km and maintain the bursting condition.

Tracking altitude

The balloon can reliably reach an altitude of about 30 km, losing under 1% of the hydrogen due to diffusion. Horizontal displacement due to wind will be considered next.

Considering factors

I’m thinking about the balloon's trajectory by integrating horizontal velocity and factoring in Earth's rotation to determine the final coordinates, using a simplified ascent speed for estimation.

Evaluating wind patterns

I’m piecing together wind speed and direction to gauge how much the balloon's trajectory might shift eastward or westward, considering the Coriolis force.

Estimating horizontal disruptration

I’m gathering info on the average horizontal displacement of the balloon, factoring in wind speed and Earth's rotation, to estimate the final coordinates and simulate the trajectory.

Revisiting calculations

I’m correcting tangential speed calculations due to Earth's rotation, ensuring the balloon's horizontal displacement accounts for the Coriolis effect and accurately reflects the final coordinates.

Adjusting my perspective

I’m working through the Earth's rotational effect on the balloon's horizontal displacement, refining calculations to ensure precise final coordinates in a rotating reference frame with atmospheric wind patterns.

Assessing longitude shift

Calculating the balloon's longitude shift at 30 km altitude, I estimate it will move from 100°E to about 102.33°E, assuming a purely eastward wind direction and stable latitude.

Thought about gas balloon flight limits,持续 4m 6s

Respuesta

下面给出一种“从大到小”的思路演示,说明怎样用近似的分析方法来估算这样一只充氢球在大气中上升到何处会因为囊材应力超过极限而破裂,并且它大约会漂移到什么坐标。需要强调的是,要真正做到“精确数值解”,必须将以下各个过程耦合起来做微分方程数值积分(还要考虑时间积分、风随高度的变化、科里奥利力等)。这里我们只做主要量纲上的估算,以便看清大概的数量级和最终结果。


1. 主要已知参数

  1. 球囊初始半径
    r0=1.68mr_{0} = 1.68\,\mathrm{m}
    初始体积

    V0=43πr0343π×(1.68)319.9m3.V_{0} = \tfrac{4}{3}\pi r_{0}^{3} \approx \tfrac{4}{3}\pi\times (1.68)^{3} \approx 19.9\,\mathrm{m^{3}}.
  2. 囊材厚度
    t=33μm=3.3×105mt = 33\,\mu\mathrm{m} = 3.3\times 10^{-5}\,\mathrm{m}

  3. 囊材应力破裂准则

    σ  =  (PinPext)r2t    16.8MPa \sigma \;=\; \frac{(P_{\mathrm{in}} - P_{\mathrm{ext}})\,r}{2\,t} \;\ge\;16.8\,\mathrm{MPa}

    时,球囊破裂。也可改写为

    (PinPext)r  =  2tσmax    (2)×(3.3×105)×(1.68×107)    1109Pam. (P_{\mathrm{in}} - P_{\mathrm{ext}})\,r \;=\; 2\,t\,\sigma_{\max} \;\approx\; (2)\times(3.3\times 10^{-5})\times (1.68\times 10^{7}) \;\approx\;1109\,\mathrm{Pa\cdot m}.

    因此,当球半径 rr 和内外压差 ΔP=PinPext\Delta P=P_{\mathrm{in}}-P_{\mathrm{ext}} 的乘积超过约
    1109Pam\,1109\,\mathrm{Pa\cdot m} 时,就会破裂。

  4. 氢气初始纯度
    ϕH296.2%\phi_{\mathrm{H_{2}}} \approx 96.2\%。这里为了简化,往往可将其近似视作“几乎纯氢”,或者只在计算初始时用到 96.2%。

  5. 氢气总物质的量(初始)
    设球在地面充气时,内部氢分压约为

    Pin,00.962×P0    0.962×1atm    0.962×101325Pa  =  9.75×104Pa. P_{\mathrm{in,0}}\approx 0.962\times P_{0} \;\approx\;0.962\times 1\,\mathrm{atm} \;\approx\;0.962\times 101325\,\mathrm{Pa} \;=\;9.75\times 10^{4}\,\mathrm{Pa}.

    温度约 T0=288.15KT_{0}=288.15\,\mathrm{K}。则初始氢气的摩尔数

    N0  =  Pin,0V0RT0    9.75×104×19.98.314×288.15    809mol. N_{0} \;=\;\frac{P_{\mathrm{in,0}}\,V_{0}}{R\,T_{0}} \;\approx\;\frac{9.75\times10^{4}\,\times 19.9} {8.314\times 288.15} \;\approx\;809\,\mathrm{mol}.

    对应的氢气质量约
    mH2,0=809×2g=1.62kg\,m_{\mathrm{H_{2},0}} = 809\times 2\,\mathrm{g} =1.62\,\mathrm{kg}

  6. 囊材质量
    如果不知道材料密度和是否“可高度弹性伸展”,精确计算比较困难。

    • 先假定材料是某种聚合物,密度 ρmat1000kg/m3\rho_{\mathrm{mat}}\approx 1000\,\mathrm{kg/m^{3}},在“未过度拉伸”时,球面积 A=4πr2A=4\pi r^{2},壳体体积 t×At\times A
    • 初始(半径 1.68 m)时球囊质量大约 mballoon,0=ρmat×t×4πr021000×(3.3×105)×4π×(1.68)2    1.2kg. m_{\mathrm{balloon,0}} =\rho_{\mathrm{mat}}\times t \times 4\pi r_{0}^{2} \approx 1000\times (3.3\times10^{-5}) \times 4\pi \times (1.68)^{2} \;\approx\;1.2\,\mathrm{kg}. 这跟氢气的质量量级相近(都是 1~2 kg 左右)。
  7. 大气压随高度的变化

    Pext(z)  =  100125exp ⁣(z/8500)Pa. P_{\mathrm{ext}}(z) \;=\;100125\,\exp\!\bigl(-z/8500\bigr)\,\mathrm{Pa}.
  8. 气温随高度的变化

    T(z)  =  288.15    0.0055z(K). T(z) \;=\;288.15 \;-\;0.0055\,z\quad(\mathrm{K}).

    这属于一种简化的对流层线性递减模型(实际到平流层会出现增温),但题目如此设定,就按其公式使用。

  9. 风速

    v(z)  =  12ln ⁣(1+z28.35)m/s. v(z) \;=\;12\ln\!\bigl(1 + \tfrac{z}{28.35}\bigr)\,\mathrm{m/s}.

    题目并未明确风向(只给了大小),往往简化为“水平向东”或“水平某个固定方向”来做单向漂移估计。

  10. 氢气渗漏

    • 渗透率 D=3.78×1012mol/(msPa)D=3.78\times10^{-12}\,\mathrm{mol/(m\cdot s\cdot Pa)}
    • 理想情况下,如果球体上升相对比较快(1~5 m/s 的典型升速);上升到平流层顶也就 1~2 小时。对一只直径几米的球而言,总渗漏摩尔量往往不会太大(相对于最初几百~上千摩尔)。
    • 因此第一近似下可以先忽略渗漏损失,或者做一个数量级估计后发现损失不超过 5~10%,对最大高度影响并不巨大。

2. 球囊在高空“爆破高度”的主要限制机理

对于典型的探空气球(无论氢气或氦气),常见的主要终止原因就是球囊因外界压强过低而被迫极度膨胀,从而拉伸到材料应力极限而破裂。这往往比“浮力耗尽”更先发生(因为只要内外同温同压,球内仍是几百上千摩尔轻气体,依然有足够浮力)。题目亦给出了

σ=(PinPext)r2t不能大于 16.8MPa. \sigma = \frac{(P_{\mathrm{in}}-P_{\mathrm{ext}})\,r}{2\,t} \quad \text{不能大于 }16.8\,\mathrm{MPa}.

故我们先假设球在飞行中,它的内压 PinP_{\mathrm{in}} 与外压 PextP_{\mathrm{ext}} 相差不大(否则稍微变大就要超应力)。用一个“微小压差” ΔP\Delta P 来支撑球膜的张力。而一旦球囊半径变很大,哪怕只有几百帕的差,也会把球膜拉到极限。

2.1 用“应力极限”近似解出临界(破裂)时的球半径

题目给出的极限条件可以改写成

(PinPext)r  =  1109Pam(约简后的常数,见上面计算). (P_{\mathrm{in}}-P_{\mathrm{ext}})\,r \;=\;1109\,\mathrm{Pa\cdot m} \quad\Bigl(\text{约简后的常数,见上面计算}\Bigr).

2.2 球内气体理想气体状态方程

如果暂且忽略渗漏,则氢气的摩尔数 NconstN\approx \mathrm{const}。又假设球内温度与外界温度一致(辐射、日照等更精细效应此处不考虑),则

PinV=NRT(z). P_{\mathrm{in}}\,V = N\,R\,T(z).

球体积 V=43πr3V = \tfrac{4}{3}\pi\,r^{3}。当球快要破裂时,满足

Pin  =  Pext+1109r. P_{\mathrm{in}} \;=\;P_{\mathrm{ext}} + \frac{1109}{r}.

把它代入状态方程,可写成(略去微分方程的严格解法,用“迭代”思路近似也行):

[Pext(z)  +  1109r]  ×43πr3  =  NRT(z). \Bigl[P_{\mathrm{ext}}(z)\;+\;\frac{1109}{r}\Bigr]\;\times \frac{4}{3}\,\pi\,r^{3} \;=\;N\,R\,T(z).

2.3 估算一个典型的“高空爆裂高度”

让我们先猜一个高度 zz,带入大气压公式

Pext(z)=100125ez/8500,T(z)=288.150.0055z. P_{\mathrm{ext}}(z) = 100125\,e^{-z/8500}, \quad T(z)=288.15 -0.0055\,z.

并假设此时球半径 rr 已经比地面时大好几倍,然后看看满足应力极限的 ΔPr=1109\Delta P\,r=1109 同时还能满足氢气的体积分布吗?

例:猜测 z30kmz\approx 30\,\mathrm{km}

  1. 大气压

    Pext(30000)=100125×exp(30000/8500)    100125×e3.53    100125×0.029    2900Pa. P_{\mathrm{ext}}(30000) = 100125 \times \exp(-30000/8500) \;\approx\;100125\times e^{-3.53} \;\approx\;100125\times 0.029 \;\approx\;2900\,\mathrm{Pa}.

    (数量级上大约 0.029 大气压,也就是约 0.03 atm。)

  2. 温度

    T(30000)=288.150.0055×30000=288.15165=123.15K. T(30000) =288.15 - 0.0055\times 30000 =288.15 -165 =123.15\,\mathrm{K}.

    (虽然真实平流层温度不会这么低,但先按题意的线性公式。)

  3. 如果球内有 N=809N=809 mol 氢气
    理想气状态方程:

    Pin[43πr3]  =  NRT. P_{\mathrm{in}}\,\bigl[\tfrac{4}{3}\pi r^{3}\bigr] \;=\;N R T.
  4. 应力极限下的内外压差
    ΔP=PinPext=1109r.\,\Delta P = P_{\mathrm{in}}-P_{\mathrm{ext}} = \tfrac{1109}{r}.

    于是

    Pin=Pext+1109r    2900+1109r. P_{\mathrm{in}} = P_{\mathrm{ext}} + \frac{1109}{r} \;\approx\;2900 + \frac{1109}{r}.
  5. 联立求 rr
    PinP_{\mathrm{in}} 带入体积分的理想气体方程,可做简单迭代。

    • 先假设 1109r\tfrac{1109}{r} 可能是几百帕量级,这与外界 2900 Pa 同阶。
    • rr 大约 4~5 米,做一个试算。

    试一下 r4.0mr \approx 4.0\,\mathrm{m},则

    1109r277Pa,Pin2900+2773177Pa. \frac{1109}{r}\approx 277\,\mathrm{Pa}, \quad P_{\mathrm{in}}\approx 2900 +277 \approx 3177\,\mathrm{Pa}.

    再看体积 43π(4.0)3268m3.\tfrac{4}{3}\pi (4.0)^{3}\approx 268\,\mathrm{m^{3}}.

    左边(理想气侧):

    Pin×V3177Pa×268m3    8.51×105J. P_{\mathrm{in}}\times V \approx 3177 \,\mathrm{Pa}\times 268\,\mathrm{m^{3}} \;\approx\;8.51\times10^{5}\,\mathrm{J}.

    右边( NRTN R T ):

    NRT(30000)=809×8.314×123.15    8.29×105J. N R T(30000) = 809\times 8.314\times 123.15 \;\approx\;8.29\times10^{5}\,\mathrm{J}.

    二者相当接近(仅 2~3% 差异),说明 r4mr\approx 4\,\mathrm{m} 时就能满足两边一致。对应的压差 ΔP277Pa\Delta P\approx 277\,\mathrm{Pa},正好也使 σ\sigma 接近极限值。这就意味着,在 30 km 左右的高度,球半径膨胀到约 4 m,就会把膜拉到极限而破裂

结论:
用题目给出的简化大气模型和应力极限,一只最初半径约 1.68 m 的氢球,很可能在 z30kmz\approx 30\,\mathrm{km} 左右发生爆破。


3. 氢气渗漏对最大高度的影响(简略估算)

题目给出渗透率 D=3.78×1012mol/(msPa)D=3.78\times10^{-12}\,\mathrm{mol/(m\cdot s\cdot Pa)},意味着球表面氢分压与外界(近乎 0 Pa 的氢分压)的差越大、面积越大,泄漏越多。升空时,球半径会增大,表面积增加,但内部氢分压则逐渐下降(因为外压在降,球体积在增)。另外,上升时间通常在 1~3 小时量级。我们做个数量级估计:

  1. 面积平均值
    球半径从 1.68 m 涨到 4 m,表面积从

    4π(1.68)235m2增到4π(4)2201m2. 4\pi (1.68)^{2}\approx35\,\mathrm{m^{2}} \quad\text{增到}\quad 4\pi (4)^{2}\approx201\,\mathrm{m^{2}}.

    取一个中间值 100~120 m^2 做平均

  2. 氢分压平均值
    内外压差从 ~1 atm (海平面) 减小到几千帕(高空),取一个中间值可能是 0.4~0.5 atm(约 40,000~50,000 Pa) 的量级作为在这段上升过程里“平均内压”。

  3. 通量

    J=D×Δp    3.78×1012×4×104    1.51×107mol/(m2s). J =D\,\times\Delta p \;\approx\;3.78\times 10^{-12} \times 4\times10^{4} \;\approx\;1.51\times10^{-7}\,\mathrm{mol/(m^{2}\cdot s)}.

    乘以表面积 ~ 120 m^2

    n˙leak    1.51×107×120  =  1.81×105mol/s. \dot{n}_{\mathrm{leak}} \;\approx\;1.51\times10^{-7}\times 120 \;=\;1.81\times10^{-5}\,\mathrm{mol/s}.

    如果上升持续约 2 小时 7200s\approx7200\,\mathrm{s},则总泄漏

    ΔNleak    1.81×105×7200  =  0.13mol. \Delta N_{\mathrm{leak}} \;\approx\;1.81\times10^{-5}\times 7200 \;=\;0.13\,\mathrm{mol}.

    与初始 809 mol 相比,仅损失了不到 0.02%。可见这一“理想材料”的渗透率非常小,对最终爆破高度影响基本可以忽略。


4. 简化浮力与升空速度、水平漂移的估算

4.1 为何浮力不会“先耗尽”?

只要球囊内氢气分子数 NN 没有显著损失,并且球内外温度大约相同、压强几乎相等(只有很小差值 ΔP\Delta P),则位于外界压强 PextP_{\mathrm{ext}}、温度 TT 下的球体积由

V=NRTPinNRTPext. V = \frac{N\,R\,T}{P_{\mathrm{in}}} \approx \frac{N\,R\,T}{P_{\mathrm{ext}}}.

排开的空气质量(即浮力来源)主要是

mair,displaced  =  ρair×V  =  PextMairRT×NRTPext  =  NMair, m_{\mathrm{air,\,displaced}} \;=\;\rho_{\mathrm{air}}\times V \;=\;\frac{P_{\mathrm{ext}}\,M_{\mathrm{air}}}{R\,T}\times \frac{N\,R\,T}{P_{\mathrm{ext}}} \;=\;N\,M_{\mathrm{air}},

与海拔无关(因为分子数 NN 不变、空气分子量 MairM_{\mathrm{air}} 固定);这意味着只要球内外同温同压,排开空气的质量 = 球内氢的摩尔数 ×\times 空气摩尔质量,独立于高度。
氢气自身质量 mH2=N×2g/molm_{\mathrm{H2}}=N\times2\,\mathrm{g/mol}。所以气体净浮力(不考虑球囊自重)就是

(mair,displacedmH2)g=N(MairMH2)g    0.027Ng(kg力). (m_{\mathrm{air,\,displaced}} - m_{\mathrm{H2}})\,g =N\,(M_{\mathrm{air}} - M_{\mathrm{H2}})\,g \;\approx\;0.027\,N\,g \quad(\text{kg力}).

用题目中的 N0809N_{0}\approx 809 mol,得浮力约

0.027×809×9.812140N(218kgf). 0.027\times 809\times 9.81\approx 2140\,\mathrm{N} \quad(\approx 218\,\mathrm{kgf}).

这远大于球囊+氢气本身总共 2.8~3 kg 的重力(约 30 N)。所以它随时都有很强的上升驱动力,只要球囊破,就会一直升。

4.2 升空所需时间(爬升速率)

在实际探空球中,爬升速率往往 3~6 m/s,通常 1~2 小时就能抵达二三十公里的高度并破裂。若我们取个平均垂直速度 5 m/s,爬到 30 km 也就 6000 s(1.67 小时)。这给出一个大概时间尺度。

4.3 水平漂移 (只给量级)

  • 题目中的风速公式 vhoriz(z)=12ln ⁣(1+z28.35)m/s. v_{\mathrm{horiz}}(z) = 12\ln\!\bigl(1 + \tfrac{z}{28.35}\bigr)\,\mathrm{m/s}. 在地面 z=0z=0ln(1+0)=0\ln(1+0)=0,风速 ~ 0;随着高度增加到上万米,风可达到数十 m/s。
  • 若我们简单假设:上升时高度从 0 增至 30 km,取一个“随高度递增的平均风速”大约是 30~40 m/s(因为 30 km 时已经达到七八十 m/s 的量级,但前期小)。
  • 上升约 6000 s,平均水平速度 35m/s\sim 35\,\mathrm{m/s},则总水平位移可能 6000×35=210km\sim 6000\times 35=210\,\mathrm{km} 左右。

4.4 经纬度变化与地球自转

  • 初始坐标 λ0=100E,  ϕ0=22N\lambda_{0}=100^\circ \mathrm{E},\;\phi_{0}=22^\circ \mathrm{N}

  • 如果风向单一朝正东,我们就把这 210 km 换算成经度差:
    地球半径约 RE6378kmR_{\mathrm{E}}\approx 6378\,\mathrm{km},在纬度 ϕ=22\phi=22^\circ 处,东西向“半径”是

    REW=REcos(22)6378×0.9275918km. R_{\mathrm{EW}}=R_{\mathrm{E}}\cos(22^\circ)\approx 6378\times 0.927\approx 5918\,\mathrm{km}.

    因此 1 度经度对应的地面弧长约

    π180×5918km    103.4km/deg. \frac{\pi}{180}\times 5918\,\mathrm{km}\;\approx\;103.4\,\mathrm{km/deg}.

    所以漂移 210 km 对应的经度增量约 210/103.42.03210/103.4\approx 2.03^\circ。也就是从东经 100° 漂到约东经 102°,纬度几乎不变(若无南北向风)。

  • 题目里还给了地球自转角速度 Ω=7.292×105rad/s\Omega=7.292\times10^{-5}\,\mathrm{rad/s}。严格来说,大气本身也是跟地球一起转动并且叠加相对风;若要做惯性系下的完整轨迹,还须考虑科里奥利力和不同高度层流场的切变。

  • 但若题目只让我们“估算最终可能落点”,最简单的就是认为“给出的风速就是相对于地面的流场”,那么球基本随风速漂移,地球表面在局部坐标系看相对不动(因为我们用的是大气科学里常见的‘地面参考系风场’)。这样就能直接积分风速得到地面轨迹。

结论(粗估):

  • 若其最终破裂高度 ~ 30 km;
  • 在 1.5~2 小时左右爬升过程中,水平约漂移 200~300 km;
  • 终点从 (100E,22N)(100^\circ \mathrm{E},\,22^\circ\mathrm{N}) 大约漂到 (102103E,22N)(102^\circ\sim 103^\circ \mathrm{E},\,22^\circ \mathrm{N})

5. 结论小结

归纳起来,按题目所给的参数与大气模型,并同时考虑到:

  1. 气囊应力破坏是主要限制:当球上升到外界压强足够低、球体积膨胀到一定半径时,即使内外实际压差只有几百帕,也会使囊材达到极限(σ=16.8MPa\sigma =16.8\,\mathrm{MPa})而破裂。
  2. 氢气渗透泄漏率很小,上升所需的 1~2 小时内,漏掉的氢气摩尔数相对于最初近千摩尔来说微不足道(少于 1%),不会显著改变浮力或压强关系。
  3. 球体在 30 km 附近(按题目的简化模型)时即可出现爆破(球半径从初始 1.68 m 膨胀至约 4 m)。
  4. 水平漂移如果按照给出的对数风速,典型爬升时间 1~2 小时内可以积累几百 km 的位移;若风向近似正东,则东经从 100° 增加到约 102°~103°,纬度维持在 22°N 左右。

最后给出的一个“大致答案”:

  • 理论最大飞行高度:约 30 km (在该高度附近因膜应力到达 16.8 MPa 而破裂)。
  • 大致落点(即球囊破裂时的水平位置):若假设风向东, λ102E 到 103E,ϕ22N. \lambda \approx 102^\circ \text{E 到 }103^\circ \text{E},\quad \phi \approx 22^\circ \text{N}. (具体多少要看风向是否精确朝东,以及积分风速廓线的细节。)

这便是考虑了氢气扩散、热膨胀、阻力(简化成典型升速)、材料破裂准则以后,一个量级上的结果。实际工程中,风随高度也可能有不同方向,地表对流层平流层的温度分层也和此简化公式不一样,但这套思路足以说明为什么典型探空球在二三十公里左右就会爆破,以及它可能漂移多远。

Compartir este Q&A