格子點計算

Creado el: 18 de enero de 2025

Respondido usando OpenAI 01 por OpenAI01

Pregunta

4. 坐標平面上,x坐標與y坐標均為整數的點稱為格子點。試問在函數圖形
y = log2 x、x軸與直線 x = 61/2 所圍有界區域的內部(不含邊界)共有多少個格子點?

(1) 88
(2) 89
(3) 90
(4) 91
(5) 92

Pensamiento

Mapping the area

I’m analyzing the region enclosed by y = log2(x), the x-axis, and x = 61/2. This area spans from 1 to 61/2 on the x-axis, with y ranging from 0 to log2(x).

Adjusting my thinking

Note that for x in (0,1), log2(x) is negative, so the region above the x-axis and below log2(x) only starts from x = 1 onwards.

Breaking down the grid

I’m focusing on the interior grid points by noting 1 < a < 61/2 and 0 < b < log2(a). This results in a range of valid x coordinates from 2 to 30.

Shifting my approach

Focusing on integer y values where 1 <= b <= floor(log2(a))-1 ensures y is strictly less than log2(a), providing valid y coordinates for each integer x within the specified range.

Considering integer constraints

OK, let's think this through: I'm counting integers b such that b < log2(a). If log2(a) equals an integer, b ranges from 1 to that integer - 1; otherwise, b ranges just up to floor(log2(a)).

Mapping valid b values

I’m gathering info on valid b values for each a by checking if log2(a) is an integer. If it isn't, b ranges from 1 to floor(log2(a)).

Investigating integer b values

I'm digging into how valid b values for each a are determined by floor(log2(a)), checking if a is a power of 2, and counting solutions accordingly.

Identifying power of 2 intervals

Now I’m pinpointing integral intervals for a, specifically acceptable values like 2, 4, 8, and 16, to ensure b < log2(a). Each interval yields a specific number of valid solutions for b.

Mapping out valid solutions

I’m counting valid solutions for each a: for 3 to 16, I’m tallying integer b values that satisfy b < log2(a), which totals 29 solutions across all intervals.

Discovering solutions

I’m adding the valid integer b values for each non-power of 2 a, noting that as a approaches 30, the number of solutions increases, starting from 3 solutions for a=16.

Figuring out solutions

OK, let me see. For each a between 17 and 30, excluding powers of 2, I’m figuring out 4 valid integer b solutions. This approach gives a total of 56 solutions.

Analyzing partial sums

I’m piecing together the partial sums for each integer a, including 3 to 16 and 17 to 30, to reach a total of 34 valid integer solutions for b.

Thought about grid points in region for 27 seconds

Respuesta

題意是要找出「在下列三道邊界之間且不含邊界的有界區域中,有多少整數格點」:

  1. y=log2xy = \log_2 x
  2. y=0y = 0xx 軸)
  3. 直線 x=612x = \tfrac{61}{2}

由於 log2x\log_2 x0<x<10<x<1 時為負值,和 y=0y=0 之間不會形成「上方有空間」的區域,因此真正形成有界區域的 xx-範圍是從 x=1x=1 開始,一直到 x=612x=\tfrac{61}{2}(約 30.5)。

我們要找的是「嚴格位於區域內」的整數點 (a,b)(a,b),也就是:

  • 1<a<30.51 < a < 30.5,因此 aa 為 2,3,4, \dots, 30 這些整數。
  • 0<b<log2(a)0 < b < \log_2(a),因此對固定的整數 aa,整數 bb 要滿足 1b<log2(a)1 \le b < \log_2(a)

逐一計算方法

log2(a)=k\lfloor \log_2(a)\rfloor = k

  • 如果 aa 正好是 2 的冪,即 a=2ka=2^k,則 log2(a)=k\log_2(a)=k 為整數,故

    b<kb=1,2,,(k1)b < k \quad\Longrightarrow\quad b = 1,2,\dots,(k-1)

    共有 k1k-1 個可行的 bb

  • 如果 aa 不是 2 的冪,則 log2(a)=k\lfloor \log_2(a)\rfloor = k 表示

    k    log2(a)  <  k+1,k \;\le\; \log_2(a) \;<\; k+1,

    又因為 bb 要嚴格小於 log2(a)\log_2(a),可行的最大整數 bbkk
    因此

    b=1,2,,kb = 1,2,\dots,k

    共有 kk 個可行的 bb

實際帶入 a=2,3,,30a = 2,3,\dots,30
  • 2 的冪:2, 4, 8, 16(在 30 以內的次方)。
  • 其餘的 aa 都不是 2 的冪。

以下列出各 aa 值所對應之可行 bb 數量,然後加總:

  1. a=2a=2212^1):log2(2)=1\log_2(2) = 1
    可行 b<1b < 1 但又必須是正整數,無解 → 0 個
  2. a=3a=3(非 2 的冪,log2(3)=1\lfloor \log_2(3)\rfloor=1)
    可行 b=1b=1 → 1 個
  3. a=4a=4222^2):log2(4)=2\log_2(4) = 2
    b<2b < 2,可行 b=1b=1 → 1 個
  4. a=5,6,7a=5,6,7log2(a)=2\lfloor \log_2(a)\rfloor=2)
    各有 b=1,2b=1,2 → 各 2 個
  5. a=8a=8232^3):log2(8)=3\log_2(8) = 3
    b<3b < 3,可行 b=1,2b=1,2 → 2 個
  6. a=9,,15a=9,\dots,15log2(a)=3\lfloor \log_2(a)\rfloor=3)
    各有 b=1,2,3b=1,2,3 → 各 3 個
  7. a=16a=16242^4):log2(16)=4\log_2(16) = 4
    b<4b < 4,可行 b=1,2,3b=1,2,3 → 3 個
  8. a=17,,30a=17,\dots,30log2(a)=4\lfloor \log_2(a)\rfloor=4,且都不是 2 的冪)
    各有 b=1,2,3,4b=1,2,3,4 → 各 4 個

將它們分批加總:

  • a=2a=2 → 0
  • a=3a=3 → 1
  • a=4a=4 → 1
  • a=5,6,7a=5,6,7 → 各 2 個,共 3×2=63\times 2=6
  • a=8a=8 → 2
  • a=9,,15a=9,\dots,15 → 各 3 個,共 7×3=217\times 3=21
  • a=16a=16 → 3
  • a=17,,30a=17,\dots,30 → 各 4 個,共 14×4=5614\times 4=56

依序累加:

(a=20)  +  (a=31)  +  (a=41)  =  2,2  +  (a=5,6,76)  =  8,8  +  (a=82)  =  10,10  +  (a=91521)  =  31,31  +  (a=163)  =  34,34  +  (a=173056)  =  90.\begin{aligned} &(\,a=2\to 0)\;+\;(a=3\to 1)\;+\;(a=4\to 1)\;=\;2,\\ &2\;+\;(a=5,6,7\to 6)\;=\;8,\\ &8\;+\;(a=8\to 2)\;=\;10,\\ &10\;+\;(a=9\sim15\to 21)\;=\;31,\\ &31\;+\;(a=16\to 3)\;=\;34,\\ &34\;+\;(a=17\sim30\to 56)\;=\;90. \end{aligned}

最終結果為 90。對照選項即為第 (3) 項。

Pregunta



---

在標準空間中,已知點 A 的座標為 $$ (a, b, c) $$,其中 $$ a, b, c $$ 皆為小於 0 的實數,且知點 A
與三平面 $$ F_1: 4y + 3z = 2 $$、$$ F_2: 3y + 4z = -5 $$、$$ F_3: x + 2y + 2z = -2 $$ 的距離都是 6。

則 $$ a + b + c = $$
---

Citations:

Pensamiento

Calculating distances

I’m working out distances from point A to three planes, each being 6. Using the plane equation, I identify normal vectors for each.

Equating distances

OK, let me see. By setting the given distance to 6, I’m piecing together equations like |4b + 3c - 2| = 30 and others for planes F2 and F3.

Understanding absolute values

I’m mapping out that |a + 2b + 2c + 2| = 18 and considering the signs of terms like 4b + 3c - 2.

Evaluating negative possibilities

Taking a closer look at the negative side, I align equations: 4b + 3c = -28 and 3b + 4c = -35, ensuring they fit the 6-distance requirement.

Solving the system

I’m solving 4b + 3c = -28 and 3b + 4c = -35 to find b and c. This solution beautifully aligns with the distance requirement of 6.

Thought about geometry and distance calculation for 15 seconds

Respuesta

解析:

題目給定空間中一點 A(a,b,c)A(a,b,c)(其中 a,b,c<0a, b, c < 0),且已知它到以下三個平面的距離皆為 6:

  1. F1:4y+3z=2F_1: 4y + 3z = 2.
  2. F2:3y+4z=5F_2: 3y + 4z = -5.
  3. F3:x+2y+2z=2F_3: x + 2y + 2z = -2.

我們想求 a+b+ca + b + c


1. 距離公式

一點 (x0,y0,z0)\bigl(x_0,y_0,z_0\bigr) 到平面 Ax+By+Cz+D=0Ax + By + Cz + D = 0 的距離為

Ax0+By0+Cz0+DA2+B2+C2.\frac{\bigl|Ax_0 + By_0 + Cz_0 + D\bigr|}{\sqrt{A^2 + B^2 + C^2}}.

以下將三平面轉寫成「= ⁣0=\!0」形式,並帶入 (a,b,c)(a,b,c) 的距離條件各為 6。


2. 平面 F1:4y+3z=2F_1 : 4y + 3z = 2

改寫為

4y+3z2=0,4y + 3z - 2 = 0,

其法向量為 0,4,3\langle 0,4,3\rangle,長度 02+42+32=5\sqrt{0^2 + 4^2 + 3^2} = 5

到此平面的距離為 6,故

4b+3c25  =  64b+3c2=30.\frac{\lvert 4b + 3c - 2\rvert}{5} \;=\; 6 \quad\Longrightarrow\quad \lvert 4b + 3c - 2\rvert = 30.

由於 b,c<0b, c < 0,大概率使得 4b+3c24b + 3c -2 為負,因此令

4b+3c2=304b+3c=28.(1)4b + 3c - 2 = -30 \quad\Longrightarrow\quad 4b + 3c = -28. \tag{1}

3. 平面 F2:3y+4z=5F_2 : 3y + 4z = -5

改寫為

3y+4z+5=0,3y + 4z + 5 = 0,

其法向量為 0,3,4\langle 0,3,4\rangle,長度 32+42=5\sqrt{3^2 + 4^2} = 5

到此平面的距離為 6,故

3b+4c+55=63b+4c+5=30.\frac{\lvert 3b + 4c + 5\rvert}{5} = 6 \quad\Longrightarrow\quad \lvert 3b + 4c + 5\rvert = 30.

同樣因 b,c<0b,c < 0,很可能

3b+4c+5=303b+4c=35.(2)3b + 4c + 5 = -30 \quad\Longrightarrow\quad 3b + 4c = -35. \tag{2}

4. 解聯立方程 (1) 與 (2)

{4b+3c=28,3b+4c=35.\begin{cases} 4b + 3c = -28,\\ 3b + 4c = -35. \end{cases}

以消去法求解:

  • 先把 (1) 乘 3 得 12b+9c=8412b + 9c = -84.
  • 再把 (2) 乘 4 得 12b+16c=14012b + 16c = -140.
  • 兩式相減得 7c=56    c=87c = -56 \implies c = -8.
  • c=8c=-8 代回 (1) 或 (2) 皆可,取 (1):
    4b+3(8)=28    4b24=28    4b=4    b=14b + 3(-8) = -28 \implies 4b - 24 = -28 \implies 4b = -4 \implies b = -1.

因此

b=1,c=8.b = -1,\quad c = -8.

5. 平面 F3:x+2y+2z=2F_3 : x + 2y + 2z = -2

改寫為

x+2y+2z+2=0,x + 2y + 2z + 2 = 0,

其法向量為 1,2,2\langle 1,2,2\rangle,長度 12+22+22=3\sqrt{1^2 + 2^2 + 2^2} = 3

到此平面的距離為 6,故

a+2b+2c+23=6a+2b+2c+2=18.\frac{\lvert a + 2b + 2c + 2\rvert}{3} = 6 \quad\Longrightarrow\quad \lvert a + 2b + 2c + 2\rvert = 18.

b=1b=-1c=8c=-8 代入得到

a+2(1)+2(8)+2  =  a216+2  =  a16  =  18.\lvert\,a + 2(-1) + 2(-8) + 2\,\rvert \;=\; \lvert\,a -2 -16 +2\,\rvert \;=\; \lvert\,a -16\,\rvert \;=\; 18.

因此 a16=±18a - 16 = \pm 18. 因為題意指出 a<0a < 0,故取

a16=18a=2.a - 16 = -18 \quad\Longrightarrow\quad a = -2.

6. 代入並求 a+b+ca + b + c

得到

a=2,b=1,c=8,a = -2,\quad b = -1,\quad c = -8,

三者皆確實小於 0。

最後

a+b+c  =  (2)+(1)+(8)  =  11.a + b + c \;=\;(-2) + (-1) + (-8) \;=\; -11.

答案: 11\boxed{-11}

Compartir este Q&A