Tính tiêu cự thị kính

Creado el: 28 de diciembre de 2024

Respondido usando OpenAI 01 por OpenAI01

Pregunta

Có một thị kính được cấu tạo bơ hệ hai thấu kính khác tiêu cự f1 và f2 biết khoảng cách cuả hai thấu kính ấy là d. Gọi tiêu cự thị kính là f3, tính f3 theo các giá trị đã biết?

Pensamiento

Xác định tiêu cự

Người dùng yêu cầu tính toán tiêu cự thị kính, biết hai thấu kính có tiêu cự f1 và f2, cách nhau một khoảng d.

Suy nghĩ cho trong giây lát

Respuesta

Để tính tiêu cự f3f_3 của thị kính được cấu tạo bởi hai thấu kính có tiêu cự f1f_1f2f_2, và khoảng cách giữa hai thấu kính là dd, chúng ta sử dụng công thức kết hợp hai thấu kính trong quang học mỏng.

Công Thức Tính Tiêu Cự Kết Hợp

Công thức tiêu cự kết hợp f3f_3 của hai thấu kính mỏng cách nhau một khoảng dd được cho bởi:

1f3=1f1+1f2df1f2\frac{1}{f_3} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}

Biến Đổi Công Thức

Để tìm f3f_3, ta biến đổi công thức trên như sau:

f3=11f1+1f2df1f2=f1f2f1+f2df_3 = \frac{1}{\frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}} = \frac{f_1 f_2}{f_1 + f_2 - d}

Kết Luận

Vậy, tiêu cự f3f_3 của thị kính được tính theo công thức:

f3=f1f2f1+f2df_3 = \frac{f_1 f_2}{f_1 + f_2 - d}

Ví Dụ Minh Họa

Giả sử:

  • f1=10f_1 = 10 cm
  • f2=15f_2 = 15 cm
  • d=5d = 5 cm

Thì:

f3=10×1510+155=15020=7.5 cmf_3 = \frac{10 \times 15}{10 + 15 - 5} = \frac{150}{20} = 7.5 \text{ cm}

Vậy, tiêu cự kết hợp của thị kính là 7.5 cm.


Lưu ý: Công thức này áp dụng cho các thấu kính mỏng và khi khoảng cách dd giữa hai thấu kính không quá lớn so với các tiêu cự f1f_1f2f_2.

Pregunta

Cho một đoàn tàu ở khoảng cách L so với vật kính đang di chuyển vuông góc so với trục chính của hệ kính. tìm điều kiện để đoàn tàu đi ra khỏi đường ngắm của kính thiên văn ấy

Pensamiento

Hiểu về ống kính quang học

Người dùng đang tìm hiểu về ống kính quang học và cách giải quyết một số vấn đề kỹ thuật liên quan đến điện và quang học.

Xác định điều kiện khi tàu rời khỏi tầm nhìn

Người dùng đang tìm cách xác định điều kiện để tàu ra khỏi tầm nhìn của kính thiên văn khi nó di chuyển vuông góc với trục chính và cách xa L từ kính.

Quan sát chuyển động

Người dùng đang nghiên cứu cách chuyển động vuông góc của tàu tương ứng với góc quan sát của kính thiên văn để xác định khi nào tàu ra khỏi trường nhìn.

Xác định điều kiện

Để tàu ra khỏi trường nhìn của kính thiên văn, góc dịch chuyển hình ảnh phải vượt quá góc trường nhìn, tức là x / L > tan θ.

Pinpointing the condition

To ensure the train is distinctly outside the field of view, the key condition is that its lateral displacement exceeds L times the tangent of half the field of view angle, θ.

Xác định điều kiện

Để tàu ra ngoài trường nhìn của kính thiên văn, cần đảm bảo rằng x lateral lớn hơn f3 θ, trong đó f3 là tiêu cự và θ là góc trường nhìn.

Xác định vị trí

Để biết tàu ra ngoài trường nhìn, cần tính toán kiểu chuyển đổi hình học bằng cách sử dụng tiêu cự f3 và góc trường nhìn θ.

Chuyển đổi đo lường

Người dùng có thể yêu cầu câu trả lời dựa trên góc trường nhìn và dịch chuyển, hoặc tiêu cự và khoảng cách L. Hãy thử điều này.

Xác định trường nhìn

Để tàu ra ngoài tầm nhìn của kính thiên văn, dịch chuyển x phải lớn hơn θ L, trong đó θ là góc trường nhìn và L là khoảng cách từ kính đến tàu.

Xác định điều kiện

Để tàu ra ngoài trường nhìn của kính thiên văn, dịch chuyển x phải lớn hơn L f3 θ, trong đó L là khoảng cách từ kính đến tàu và f3 là tiêu cự.

Quan sát góc mắt

Để tàu ra ngoài tầm nhìn của kính thiên văn, dịch chuyển x phải lớn hơn f3 nhân với góc trường nhìn. Điều này đảm bảo rằng tàu không còn nhìn thấy.

Định hình trường nhìn

Người dùng đang cố gắng hiểu cách kính thiên văn xác định trường nhìn và điều kiện để một vật thể ra ngoài tầm nhìn, sử dụng tiêu cự và góc trường nhìn.

Tìm hiểu góc trường nhìn

Đang nghiên cứu cách kính thiên văn xem xét góc trường nhìn và ảnh gây ra từ dịch chuyển vật thể trong trường nhìn. Điều này tạo thêm sự hiểu biết sâu hơn về khả năng của kính thiên văn.

Tìm hiểu chi tiết

Điều kiện để tàu ra khỏi trường nhìn là x phải lớn hơn L tan θ_max, trong đó θ_max là góc trường nhìn của kính thiên văn.

Xác định điều kiện

Để tàu ra khỏi trường nhìn của kính thiên văn, x phải lớn hơn L tan θ_max, trong đó θ_max là góc trường nhìn của kính thiên văn.

Tìm kiếm tối ưu hóa

Giải quyết tìm điểm tối ưu của hàm bằng cách sử dụng phương pháp tính đạo hàm và tìm các điểm cực trị để xác định điểm tối ưu của hàm trong một khoảng cho trước.

Xác định điều kiện

Để tàu rời khỏi trường nhìn của kính thiên văn, dịch chuyển x phải lớn hơn L tan θ_max, trong đó θ_max là góc trường nhìn của kính.

Xác định điều kiện

Độ lệch ngang x của đoàn tàu phải lớn hơn khoảng cách L nhân với góc mở θ_max của kính thiên văn để rời khỏi trường nhìn.

Xác định điều kiện

Để tàu ra khỏi trường nhìn của kính thiên văn, độ lệch ngang x của tàu phải lớn hơn hoặc bằng L tan θ_max, trong đó θ_max liên quan đến tiêu cự f3.

Giải đáp vấn đề

Để đoàn tàu rời khỏi đường ngắm của kính thiên văn, cần xác định điều kiện liên quan đến tiêu cự và khoảng cách từ kính đến tàu, xác định góc mở của kính.

Xác định điều kiện

Đoàn tàu rời khỏi trường nhìn của kính thiên văn khi x / L lớn hơn θ_max, trong đó θ_max phụ thuộc vào tiêu cự f3 và kích thước thấu kính hoặc cảm biến.

Xác định điều kiện

Để đoàn tàu ra khỏi trường nhìn của kính thiên văn, x / L cần lớn hơn D / f3, với D là đường kính thấu kính hoặc cảm biến và f3 là tiêu cự.

Suy nghĩ cho 20 giây

Respuesta

Để xác định điều kiện để đoàn tàu đi ra khỏi đường ngắm của kính thiên văn, chúng ta cần xem xét mối quan hệ giữa góc mở của kính thiên văn, khoảng cách đến đoàn tàu và độ lệch ngang của đoàn tàu so với trục chính của kính.

Giả Định

  • f3f_3: Tiêu cự của kính thiên văn.
  • LL: Khoảng cách từ kính thiên văn đến đoàn tàu.
  • θmax\theta_{\text{max}}: Góc mở tối đa mà kính thiên văn có thể quan sát.
  • xx: Độ lệch ngang của đoàn tàu so với trục chính của kính thiên văn.

Điều Kiện Để Đoàn Tàu Rời Khỏi Đường Ngắm

Đoàn tàu sẽ rời khỏi đường ngắm của kính thiên văn khi góc mà đoàn tàu tạo ra so với trục chính của kính vượt quá góc mở tối đa của kính. Cụ thể, khi độ lệch ngang xx của đoàn tàu đủ lớn, góc θ\theta mà đoàn tàu tạo ra sẽ vượt qua θmax\theta_{\text{max}}.

Công Thức

Góc θ\theta được xác định bởi:

θ=arctan(xL)\theta = \arctan\left(\frac{x}{L}\right)

Để đoàn tàu rời khỏi đường ngắm:

θ>θmax\theta > \theta_{\text{max}}

Với giả định góc nhỏ (thường áp dụng trong quang học), ta có thể xấp xỉ:

θxL\theta \approx \frac{x}{L}

Do đó, điều kiện trở thành:

xL>θmax\frac{x}{L} > \theta_{\text{max}}

Liên Hệ Với Tiêu Cự f3f_3

Góc mở θmax\theta_{\text{max}} của kính thiên văn thường liên quan đến tiêu cự f3f_3 và đường kính của thấu kính hoặc cảm biến DD thông qua công thức:

θmaxDf3\theta_{\text{max}} \approx \frac{D}{f_3}

Lưu ý: Công thức trên áp dụng khi θmax\theta_{\text{max}} được đo bằng radian và DD là đường kính thấu kính hoặc cảm biến của kính thiên văn.

Kết Luận

Từ các công thức trên, điều kiện để đoàn tàu đi ra khỏi đường ngắm của kính thiên văn là:

xL>Df3\frac{x}{L} > \frac{D}{f_3}

Hay tương đương:

x>LDf3x > \frac{L \cdot D}{f_3}

Hoặc nếu biết góc mở tối đa θmax\theta_{\text{max}}:

x>Ltan(θmax)x > L \cdot \tan(\theta_{\text{max}})

Ví Dụ Minh Họa

Giả sử:

  • Tiêu cự của kính thiên văn f3=1000f_3 = 1000 mm
  • Đường kính thấu kính D=50D = 50 mm
  • Khoảng cách đến đoàn tàu L=500L = 500 m

Điều kiện để đoàn tàu rời khỏi đường ngắm là:

x>500m×50mm1000mm=25mx > \frac{500 \, \text{m} \times 50 \, \text{mm}}{1000 \, \text{mm}} = 25 \, \text{m}

Vậy, đoàn tàu cần di chuyển ít nhất 25 mét ngang so với vị trí ban đầu để rời khỏi đường ngắm của kính thiên văn.

Kết Luận Chung

Điều kiện để đoàn tàu đi ra khỏi đường ngắm của kính thiên văn được xác định bằng mối quan hệ giữa độ lệch ngang xx, khoảng cách LL, đường kính thấu kính DD và tiêu cự f3f_3 của kính thiên văn. Công thức tổng quát là:

x>LDf3x > \frac{L \cdot D}{f_3}

Hoặc, nếu sử dụng góc mở tối đa:

x>Ltan(θmax)x > L \cdot \tan(\theta_{\text{max}})

Đảm bảo rằng các giá trị sử dụng trong công thức phải được thống nhất về đơn vị đo lường để đảm bảo tính chính xác.

Compartir este Q&A