二阶偏导数计算

Creado el: 8 de diciembre de 2024

Respondido usando O1 por Chat01

Pregunta

设z=f(x^2-y^2, xy),且f(u,v)有连续的二阶偏导数, 则(∂z)^2/∂x ∂y=?

Pensamiento

Breaking down the derivatives

I’m working through the problem by expressing z in terms of u and v, calculating the first and second partial derivatives, and then simplifying them step-by-step to find ∂^2z/∂x∂y.

Breaking down the derivatives

I’m recalling the partial derivatives of u and v with respect to y, using these to simplify the expression for ∂^2z/∂x∂y. This involves combining terms and noting symmetry.

Rearranging terms

I’m arranging the partial derivatives of f to group like terms, keeping in mind the relationship between x, y, u, and v. This helps in identifying an elegant form for the expression.

Thought for a few seconds

Respuesta

z=f(u,v)z = f(u, v),其中 u=x2y2u = x^2 - y^2v=xyv = xy。我们需要计算 2zxy\frac{\partial^2 z}{\partial x \partial y}

首先,计算一阶偏导数:

zx=fuux+fvvx=fu2x+fvy\frac{\partial z}{\partial x} = f_u \cdot \frac{\partial u}{\partial x} + f_v \cdot \frac{\partial v}{\partial x} = f_u \cdot 2x + f_v \cdot y

然后,对上述结果再对 yy 求导:

2zxy=y(fu2x+fvy)\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left( f_u \cdot 2x + f_v \cdot y \right)

利用链式法则和二阶连续可导性,可以展开为:

2zxy=(fuuuy+fuvvy)2x+(fvuuy+fvvvy)y+fv\frac{\partial^2 z}{\partial x \partial y} = \left( f_{uu} \cdot \frac{\partial u}{\partial y} + f_{uv} \cdot \frac{\partial v}{\partial y} \right) \cdot 2x + \left( f_{vu} \cdot \frac{\partial u}{\partial y} + f_{vv} \cdot \frac{\partial v}{\partial y} \right) \cdot y + f_v

代入 uy=2y\frac{\partial u}{\partial y} = -2yvy=x\frac{\partial v}{\partial y} = x

2zxy=(2yfuu+xfuv)2x+(2yfuv+xfvv)y+fv\frac{\partial^2 z}{\partial x \partial y} = (-2y f_{uu} + x f_{uv}) \cdot 2x + (-2y f_{uv} + x f_{vv}) \cdot y + f_v

简化后得到:

2zxy=4xyfuu+(2x22y2)fuv+xyfvv+fv\frac{\partial^2 z}{\partial x \partial y} = -4xy f_{uu} + (2x^2 - 2y^2) f_{uv} + xy f_{vv} + f_v

最终结果为:

2zxy=4xyfuu+(2x22y2)fuv+xyfvv+fv\frac{\partial^2 z}{\partial x \partial y} = -4xy\, f_{uu} + (2x^2 - 2y^2)\, f_{uv} + xy\, f_{vv} + f_v

Pregunta

不是应该还有导数符号的吗

Pensamiento

Including partial derivatives

Piecing together the solution with more detailed partial derivatives notations. This seems crucial for accuracy and clarity in the final expression.

Thought about second-order partial derivatives for a few seconds

Respuesta

下面给出更为完整的推导,并用明确的偏导数符号表示最终结果。

解答步骤:

  1. 定义
    已知 z=f(u,v)z = f(u,v) ,其中

    u=x2y2,v=xy.u = x^2 - y^2,\quad v = xy.
  2. 一阶偏导数
    首先对 xx 求偏导:

    zx=fuux+fvvx.\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial f}{\partial v}\frac{\partial v}{\partial x}.

    计算 u,vu,vxx 的偏导:

    ux=2x,vx=y.\frac{\partial u}{\partial x} = 2x,\quad \frac{\partial v}{\partial x} = y.

    zx=fu(2x)+fv(y).\frac{\partial z}{\partial x} = f_u(2x) + f_v(y).

    这里为简写起见,用 fu=fuf_u = \frac{\partial f}{\partial u}, fv=fvf_v = \frac{\partial f}{\partial v} 表示。

  3. 二阶混合偏导数
    现在对上式再对 yy 求偏导:

    2zyx=y(fu(2x)+fv(y)).\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y}(f_u(2x) + f_v(y)).

    当对 yy 求导时, fuf_ufvf_v 都是以 u,vu,v 为自变量的函数,需要用链式法则。
    首先再次求出 u,vu,vyy 的偏导:

    uy=2y,vy=x.\frac{\partial u}{\partial y} = -2y,\quad \frac{\partial v}{\partial y} = x.

    利用链式法则对 fuf_ufvf_v 求对 yy 的偏导:

    fuy=fuuuy+fuvvy=fuu(2y)+fuv(x),\frac{\partial f_u}{\partial y} = \frac{\partial f_u}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial f_u}{\partial v}\frac{\partial v}{\partial y} = f_{uu}(-2y) + f_{uv}(x), fvy=fvuuy+fvvvy=fvu(2y)+fvv(x).\frac{\partial f_v}{\partial y} = \frac{\partial f_v}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial f_v}{\partial v}\frac{\partial v}{\partial y} = f_{vu}(-2y) + f_{vv}(x).

    将上面结果代入:

    2zyx=y(2xfu+yfv)=2xfuy+(yfv)y.\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y}(2x f_u + y f_v) = 2x \frac{\partial f_u}{\partial y} + \frac{\partial (y f_v)}{\partial y}.

    yfvy f_v 求导要用积的法则:

    (yfv)y=fv+yfvy.\frac{\partial (y f_v)}{\partial y} = f_v + y \frac{\partial f_v}{\partial y}.

    综合起来:

    2zxy=2x(fuu(2y)+fuv(x))+(fv+y(fvu(2y)+fvv(x))).\frac{\partial^2 z}{\partial x \partial y} = 2x(f_{uu}(-2y) + f_{uv}(x)) + \left( f_v + y(f_{vu}(-2y) + f_{vv}(x)) \right).

    注意 fuv=fvuf_{uv} = f_{vu},所以合并同类项时可以直接将 fuvf_{uv}fvuf_{vu} 视为同一个二阶混合偏导数。

  4. 整理表达式
    展开并合并项:

    2zxy=2x(2yfuu+xfuv)+fv+y(2yfuv+xfvv).\frac{\partial^2 z}{\partial x \partial y} = 2x(-2y f_{uu} + x f_{uv}) + f_v + y(-2y f_{uv} + x f_{vv}).

    将各项展开:

    =4xyfuu+2x2fuv+fv2y2fuv+xyfvv.= -4xy f_{uu} + 2x^2 f_{uv} + f_v - 2y^2 f_{uv} + xy f_{vv}.

    最后将 fuvf_{uv} 项合并:

    2zxy=4xy2fu2+(2x22y2)2fuv+xy2fv2+fv.\frac{\partial^2 z}{\partial x \partial y} = -4xy \frac{\partial^2 f}{\partial u^2} + (2x^2 - 2y^2) \frac{\partial^2 f}{\partial u \partial v} + xy \frac{\partial^2 f}{\partial v^2} + \frac{\partial f}{\partial v}.

最终答案:

2zxy=4xy2fu2+(2x22y2)2fuv+xy2fv2+fv.\frac{\partial^2 z}{\partial x \partial y} = -4xy\,\frac{\partial^2 f}{\partial u^2} + (2x^2 - 2y^2)\,\frac{\partial^2 f}{\partial u \partial v} + xy\,\frac{\partial^2 f}{\partial v^2} + \frac{\partial f}{\partial v}.

Compartir este Q&A