三重积分计算

Creado el: 4 de octubre de 2024

Respondido usando O1 Preview por Chat01

Pregunta

\item 计算 Ωx2dxdydz\iiint_{\Omega} x^2 dxdydz,其中 Ω\Omegaz=3x2y2z = 3 - x^2 - y^2z=0z = 0 所围成。

Respuesta

计算三重积分

转换坐标

我在极坐标系下简化积分,发现积分极围绕半径从0到√3、角度从0到2π、z从0到3 - r^2。

整合收入

将积分分解,先对zz积分,得到3r23 - r^2%。然后变成双重积分,接着我将对rr积分。

拆分和简化
我首先将被积函数拆分为两个部分,逐个积分。然后,提取出与 rr 相关的部分来进行简化。

Respuesta

To compute the triple integral Ωx2dxdydz\iiint_{\Omega} x^2 \, dx\,dy\,dz, where Ω\Omega is bounded by the paraboloid z=3x2y2z = 3 - x^2 - y^2 and the plane z=0z = 0, we can use cylindrical coordinates due to the symmetry of the region.

Step 1: Convert to Cylindrical Coordinates

In cylindrical coordinates:

  • x=rcosθx = r \cos \theta
  • y=rsinθy = r \sin \theta
  • x2=r2cos2θx^2 = r^2 \cos^2 \theta
  • The Jacobian (volume element) is rdzdrdθr\,dz\,dr\,d\theta

Step 2: Determine the Limits of Integration

  • rr ranges from 00 to 3\sqrt{3} because x2+y2=r23x^2 + y^2 = r^2 \leq 3
  • θ\theta ranges from 00 to 2π2\pi
  • zz ranges from 00 to 3r23 - r^2

Step 3: Set Up the Integral

Ωx2dxdydz=02π0303r2r2cos2θrdzdrdθ=02π03r3cos2θ(3r2)drdθ\iiint_{\Omega} x^2 \, dx\,dy\,dz = \int_{0}^{2\pi} \int_{0}^{\sqrt{3}} \int_{0}^{3 - r^2} r^2 \cos^2 \theta \cdot r \, dz\,dr\,d\theta = \int_{0}^{2\pi} \int_{0}^{\sqrt{3}} r^3 \cos^2 \theta (3 - r^2) \, dr\,d\theta

Step 4: Integrate with Respect to zz

Since the integrand does not depend on zz, the zz-integration yields:

03r2dz=3r2\int_{0}^{3 - r^2} dz = 3 - r^2

Step 5: Simplify and Integrate with Respect to rr

Expand the integrand:

r3cos2θ(3r2)=3r3cos2θr5cos2θr^3 \cos^2 \theta (3 - r^2) = 3r^3 \cos^2 \theta - r^5 \cos^2 \theta

Integrate with respect to rr:

03(3r3r5)dr=[3r44r66]03=27492=94\int_{0}^{\sqrt{3}} \left(3r^3 - r^5\right) dr = \left[ \frac{3r^4}{4} - \frac{r^6}{6} \right]_0^{\sqrt{3}} = \frac{27}{4} - \frac{9}{2} = \frac{9}{4}

Step 6: Integrate with Respect to θ\theta

Recall that cos2θ=1+cos2θ2\cos^2 \theta = \frac{1 + \cos 2\theta}{2}. Then:

02πcos2θdθ=1202π(1+cos2θ)dθ=12(2π+0)=π\int_{0}^{2\pi} \cos^2 \theta \, d\theta = \frac{1}{2} \int_{0}^{2\pi} (1 + \cos 2\theta) \, d\theta = \frac{1}{2} (2\pi + 0) = \pi

Step 7: Compute the Final Result

Multiply the results of the rr- and θ\theta-integrations:

94π=9π4\frac{9}{4} \cdot \pi = \frac{9\pi}{4}

Answer: 94π\displaystyle \frac{9}{4}\, \pi

Compartir este Q&A