В треугольнике ABC угол A равен 30∘, угол B равен 105∘. Медианы треугольника ABC пересекаются в точке M, высоты пересекаются в точке H. Длина медианы, проведённой из вершины B, равна 27/8. Найдите длину отрезка MH.
Gedanke
Solving for distance between centroid and orthocenter
I need to compute the distance between the centroid M and the orthocenter H in a triangle with known angles and median length. The Euler line has the centroid G on it, and G divides the segment from the circumcenter to the orthocenter in a 1:2 ratio. I’ll express MH using formulas involving the circumradius R and side lengths.
Analyzing centroid and orthocenter in an obtuse triangle
I’m working through the geometry of an obtuse triangle where H, O, and G are collinear. The ratio is important, with OG:GH = 1:2. Since this is an obtuse triangle (angle B = 105°), the orthocenter lies outside, but the Euler line still holds with G dividing OH. The vector relationship works out with H being 3 times G.
Relating sides, circumradius, and median
I'm expressing the sides of the triangle in terms of the circumradius R using the law of sines. From the angles known, I can find the sides: a = R, b = R * √2(√3+1)/2, and c = R√2. Then, I need to compute the median from B using the formula in terms of R, and I’ll simplify the expressions step-by-step.
Computing the distance MH
After breaking down calculations, I find that GH = (4/3) * m_b, where m_b is the median, and substituting the given value of m_b = 27/8 leads to GH = 9/2. Since M is the centroid, MH equals GH, so MH = 9/2, which is the desired result!
Thought for 1m 51s
Antwort
Обозначим стороны a=BC,b=CA,c=AB. Даны углы:
A=30∘,B=105∘,C=45∘.
1) Выразим стороны через радиус описанной окружности R
Пусть O — центр описанной окружности, M — центр масс (центроид), H — ортоцентр. Из векторного факта (при O в начале координат) OH=OA+OB+OC, а OM=3OA+OB+OC, получаем