设底面为菱形且高为\sqrt{3}的直四棱柱A B C D - A_{1}B_{1}C_{1}D_{...

Erstellt am: 6. März 2025

Beantwortet mit O3 Mini High von Chat01

Frage

设底面为菱形且高为\sqrt{3}的直四棱柱A B C D - A_{1}B_{1}C_{1}D_{1}中,已知底面边长为正整数a且为定值, \angle B A D = \frac{\pi}{3} ,若矩形C D D_{1}C_{1}内的点E满足A E = \sqrt{7}的轨迹长度为\frac{2 \pi}{3}设点F为三棱柱A B D - A_{1}B_{1}D_{1}的外接球上一点,则四棱锥F - B C C_{1}B_{1}体积的最大值为__

Gedanke

Parsing geometry problem

Okay, so we’ve got a geometry problem involving a quadrangular prism with rhombus-shaped base and height of 3\sqrt{3}, where the base side length aa is a fixed integer. Angle BAD=π/3B A D = \pi/3. Then, a rectangle CDD1C1C D D_{1}C_{1} contains a point EE that moves along a path satisfying AE=7A E = \sqrt{7}. There's more, like a point FF on the circumsphere of another triangular prism, and something about the volume of a pyramid. Seems complicated, huh? I’ll keep processing it.

Interpreting geometry problem

The text says the arc length or "轨迹长度" of point E is 2π/32\pi/3. I think this means E moves along a circular arc, where the central angle is 2π/32\pi/3.

Now let’s look at the whole structure. We have a quadrangular prism with base as a rhombus and height 3\sqrt{3}. Vertices A,B,C,DA, B, C, D form the rhombus which implies all sides are the same length, and angle BAD=60\angle BAD = 60^\circ. The rectangle CDD1C1C D D_1 C_1 is part of the setup, but I need to clarify its positioning.

Clarifying geometry setup

In a rhombus, adjacent angles sum to 180°, so with an angle of 60° at A, the opposite angle is 60°, and the other two angles are 120°. Now, considering the rectangle CDD1C1C D D_1 C_1, it forms a lateral face with edges CD and height 3\sqrt{3}. Point E lies in this rectangle, satisfying AE=7A E = \sqrt{7}, and describes an arc length of 2π/32\pi/3. This likely means E's locus on a circle has this arc, helping define the geometry of the intersection. I’ll keep reworking it.

Refining approach

It looks like we’re determining the arc of a circle that lies within the rectangle CDD1C1C D D_1 C_1, given that the distance AE=7A E = \sqrt{7}. The set of points satisfying this condition forms a circular arc of length 2π/32\pi/3. The relationship between the base side length aa, the radius of the sphere, and the arc length restrictions will help determine possible values for aa. It seems that aa can only be 1, 2, or 3 based on these conditions, and this impacts the maximization of the volume we are after. Let’s continue!

Evaluating possible values for a

For a = 1, the circle has a radius of 2.5, but the intersection with the rectangle seems implausible due to the angle constraints, possibly not forming the required arc length. For a = 2, the radius is 2, and the conditions for the arc length inside the rectangle become much more reasonable. It seems more likely that a = 2 fits the condition, as a = 3 fails due to the arc length exceeding the full circle's circumference. Therefore, a = 2 is probably the correct choice.

Maximizing pyramid volume

We’ve deduced that for a=2a = 2, the arc length condition is satisfied. Now, moving on to the second part: finding the volume of the pyramid formed by points FF, BB, CC, C1C1, and B1B1. This requires determining the circumsphere of the triangular prism formed by points AA, BB, DD, and their top vertices. The goal is to maximize the perpendicular distance from point FF, located on the circumsphere, to the plane containing the base of the pyramid, which will determine the volume.

Maximizing pyramid volume - final check

We’ve now calculated the circumsphere’s radius and center for the triangular prism. The maximum distance from the sphere to the base plane is 332\frac{3\sqrt{3}}{2}, which gives the maximum height of the pyramid’s apex. With the base area of the pyramid already computed as 232\sqrt{3}, the volume comes out to be 3 cubic units. So, the maximum volume of the pyramid is 3. Hence, the answer is 3.

Reasoned about four-sided pyramid volume for 1m 13s

Antwort

我们来分步分析此题。


1. 确定直四棱柱的底面参数

题中给出底面为菱形,边长为正整数 aa 且为定值,且 BAD=π/3\angle BAD=\pi/3;又知高为 3\sqrt3 。为了便于计算,我们取 a=2a=2(后续“矩形 CDD1C1CD D_1 C_1 内点 EE 的轨迹长度”为 2π/32\pi/3 正好确定 a=2a=2)。

设:

  • A=(0,0,0)A=(0,0,0)
  • ABAB 沿 xx 轴,则 B=(2,0,0)B=(2,0,0)
  • BAD=π/3\angle BAD=\pi/3D=(2cos60,2sin60,0)=(1,3,0)D=(2\cos60^\circ,\,2\sin60^\circ,\,0)=(1,\sqrt3,0)
  • 菱形的另一顶点 C=B+DA=(3,3,0)C=B+D-A=(3,\sqrt3,0)

顶面各点只在 zz 坐标上加 3\sqrt3

  • A1=(0,0,3)A_1=(0,0,\sqrt3)B1=(2,0,3)B_1=(2,0,\sqrt3)C1=(3,3,3)C_1=(3,\sqrt3,\sqrt3)D1=(1,3,3)D_1=(1,\sqrt3,\sqrt3)

2. 利用“轨迹长度”确定 aa

考虑矩形 CDD1C1CDD_1C_1

  • 底边 CDCD 的两个端点为 C=(3,3,0)C=(3,\sqrt3,0)D=(1,3,0)D=(1,\sqrt3,0)
  • 顶边 C1D1C_1D_1 分别为 C1=(3,3,3)C_1=(3,\sqrt3,\sqrt3)D1=(1,3,3)D_1=(1,\sqrt3,\sqrt3)

在该矩形内,点 EE 满足 AE=7AE=\sqrt7 ,即 EE在以 A=(0,0,0)A=(0,0,0) 为圆心、半径为 7\sqrt7 的球面上;但由于 EE受限于平面 y=3y=\sqrt3(因为 CDD1C1CDD_1C_1 的所有点 yy 坐标均为 3\sqrt3),故交线为一个圆,其半径为

R=(7)2(A到平面 y=3 的距离)2=7(232)2=73224.R=\sqrt{(\sqrt7)^2-\left(\text{A到平面 } y=\sqrt3 \text{ 的距离}\right)^2}=\sqrt{7-\left(\frac{2\sqrt3}{2}\right)^2}=\sqrt{7-\frac{3\cdot2^2}{4}}.

a=2a=2 时,上式得 R=73=4=2R=\sqrt{7-3}=\sqrt4=2。于是圆的全长为 2πR=4π2\pi R=4\pi;而题中所给“轨迹长度”为 2π/32\pi/3 。实际上,经计算可知当 a=2a=2 时,圆与矩形 CDD1C1CDD_1C_1 的交弧正好为以圆心角 2π/32=π3\frac{2\pi/3}{2}= \frac{\pi}{3} 对应的弧,其弧长为 2π3=2π32\cdot\frac{\pi}{3}= \frac{2\pi}{3}。(验证细节略)这唯一确定了 a=2a=2


3. 求三棱柱外接球

取三棱柱 ABDA1B1D1ABD-A_1B_1D_1 的底面三角形 ABDABD

  • A=(0,0,0),B=(2,0,0),D=(1,3,0)A=(0,0,0),\,B=(2,0,0),\,D=(1,\sqrt3,0)

三角形 ABDABD 的外心可由垂直平分线求得,经计算得

O=(1,13,0),O_{\text{底}}=\left(1,\frac{1}{\sqrt3},0\right),

且其外接圆半径为

R=23.R_{\triangle}=\frac{2}{\sqrt3}\,.

由于直棱柱为“直”的,三棱柱的外接球中心为底面外心与顶面对应外心的连线中点,即

O=(1,13,32)O=\left(1,\frac{1}{\sqrt3},\frac{\sqrt3}{2}\right)

,球半径为

R=R2+(32)2=43+34=16+912=536.R_{\text{球}}=\sqrt{R_{\triangle}^2+\left(\frac{\sqrt3}{2}\right)^2}=\sqrt{\frac{4}{3}+\frac{3}{4}}=\sqrt{\frac{16+9}{12}}=\frac{5\sqrt3}{6}\,.

4. 求四棱锥 FBCC1B1F-BC\,C_1B_1 体积最大值

四棱锥底面为 B,C,C1,B1B,\,C,\,C_1,\,B_1

  • B=(2,0,0),C=(3,3,0),B1=(2,0,3),C1=(3,3,3)B=(2,0,0),\,C=(3,\sqrt3,0),\,B_1=(2,0,\sqrt3),\,C_1=(3,\sqrt3,\sqrt3)

可以验证,此四边形为矩形,其边长:

  • BCBC 长:(32)2+(30)2=1+3=2\sqrt{(3-2)^2+(\sqrt3-0)^2}=\sqrt{1+3}=2
  • BB1BB_1 长:3\sqrt3

故面积 S=23S=2\sqrt3

我们要求四棱锥的体积最大值。体积公式为

V=13Sh,V=\frac{1}{3}S\cdot h\,,

其中 hh 为顶点 FF 到底面所在平面的垂直距离。

题中 FF 为三棱柱外接球上的一点,我们可在该球上选取使 FF 到平面 PP(由 B,C,B1,C1B,\,C,\,B_1,\,C_1 所在的平面)的距离最大。

求平面 PP 的方程

B=(2,0,0),C=(3,3,0),B1=(2,0,3)B=(2,0,0),\,C=(3,\sqrt3,0),\,B_1=(2,0,\sqrt3)三点,

  • 向量 BC=(1,3,0)\overrightarrow{BC}=(1,\sqrt3,0)
  • 向量 BB1=(0,0,3)\overrightarrow{BB_1}=(0,0,\sqrt3)

两向量的叉积得法向量:

n=(1,3,0)×(0,0,3)=(3,3,0).\mathbf{n}=(1,\sqrt3,0)\times(0,0,\sqrt3)=(3,-\sqrt3,0)\,.

故平面 PP 可写为

3(x2)3(y0)=03x3y6=0.3(x-2)-\sqrt3(y-0)=0\quad\Longrightarrow\quad 3x-\sqrt3y-6=0\,.

zz 坐标任取,即平面垂直于 xyxy 平面方向无关。)

计算球心 OO 到平面 PP 的距离

利用公式

d=31313632+(3)2=3169+3=423=23.d=\frac{|3\cdot1-\sqrt3\cdot\frac{1}{\sqrt3}-6|}{\sqrt{3^2+(\sqrt3)^2}}=\frac{|3-1-6|}{\sqrt{9+3}}=\frac{4}{2\sqrt3}=\frac{2}{\sqrt3}\,.

在已知球半径 R=536R_{\text{球}}=\frac{5\sqrt3}{6} 下,球上点 FF 到平面 PP 的最大距离为

hmax=d+R=23+536=436+536=936=332.h_{\max}=d+R_{\text{球}}=\frac{2}{\sqrt3}+\frac{5\sqrt3}{6}=\frac{4\sqrt3}{6}+\frac{5\sqrt3}{6}=\frac{9\sqrt3}{6}=\frac{3\sqrt3}{2}\,.

故最大体积

Vmax=13(23)332=1323332=13(33)=3.V_{\max}=\frac{1}{3}\cdot(2\sqrt3)\cdot\frac{3\sqrt3}{2}=\frac{1}{3}\cdot\frac{2\sqrt3\cdot3\sqrt3}{2}=\frac{1}{3}\cdot(3\cdot3)=3\,.

结论

四棱锥 FBCC1B1F-BC\,C_1B_1 的体积最大值为 3.

Diesen Q&A teilen