曲线 \( E \) 的标准方程是: \[ \boxed{\dfrac{x^2}{9} + \dfr...

Erstellt am: 20. Januar 2025

Beantwortet mit O1 Pro von Chat01

Frage

曲线 EE 的标准方程是:

\boxed{\dfrac{x^2}{9} + \dfrac{y^2}{8} = 1} $$已知点 $C(-3, 0)$ , $D(2, 0)$ ,过点 $D$ 的动直线与曲线 $E$ 相交于 $M$ 、 $N$ ,设 $\triangle CMN$ 的外心为 $Q$ , $O$ 为坐标原点,问:直线 $OQ$ 与直线 $MN$ 的斜率之积是否为定值,如果为定值,求出该定值;如果不是定值,则说明理由。

Gedanke

Mapping the line through points

I'm examining ellipse E through points C and D. L intersects ellipse at M and N. Using the circumcenter Q, I’ll see if the slopes of OQ and MN are constant.

Parametric line and intersections

I’m thinking about a line through D intersecting the ellipse at M and N. Using triangle CMN’s circumcenter Q, I’ll find slopes of OQ and MN, checking for a constant product.

Connecting slope relationships

I’m substituting the line into the ellipse equation to pinpoint intersection points M and N. Then, examining the product of slopes OQ and MN to test for constant slope.

Calculating the circumcenter

Using geometric principles, I'll pinpoint the circumcenter Q by identifying the intersection of perpendicular bisectors. This approach will consolidate our findings.

Pondering reflection properties

I’m considering properties of the ellipse, like reflections and chord length formulas. This might simplify figuring out slopes and intersections, leading to a clearer solution.

Analyzing slopes and relationships

I’m working through the slopes of lines OQ and MN, aiming to see if their product is constant. This involves defining coordinates and slopes to test for consistency.

Charting intersections

I’m mapping out the intersection of perpendicular bisectors through points C, M, and N. Recognizing triangles with constant slope helps me understand the center's influence on these slopes.

Melting the problem

I'm crafting a circle through points C, M, and N, aiming to find the locus to ensure triangle CMN's circumcenter consistently stays on L.

Assessing slopes

I'm working out the slopes of lines OQ and MN by solving for their slopes, focusing on the product to determine if it's constant.

Piecing together the midpoint

I'm working through finding the midpoint of a chord through point D using ellipse principles. This reveals closer connections between D, M, and N.

Equidistant center

I’m mapping out that the circumcenter Q, equidistant from points C, M, and N, results from their perpendicular bisectors' intersection on the ellipse.

Spotting patterns

I'm thinking of picking specific slopes and seeing if the product of slopes OQ and MN stays constant, then checking for any predictable patterns.

Assessing slope impacts

I’m working through slope m1 = 1 and the intersection points M and N. This reveals the triangle's structure, which could help determine if the slope product is constant.

Solving intersections

I’m digging into the quadratic formula to find intersection points M and N with the ellipse. This helps define the triangle's structure and slopes for further analysis.

Inserting slopes

I’m thinking through the perpendicular bisectors of segments CM, CN, and MN to uncover the circumcenter Q. This involves calculating slopes and equations for these bisectors to find Q's coordinates.

Charting the course

I’m pinpointing intersection points M and N on the ellipse and calculating triangle CMN's midpoint. This guides us in confirming perpendicular bisectors and their slopes for further calculations.

Calculating slopes and intersections

I’m determining the slope of line CM, working out the perpendicular bisector's equation, and checking the midpoint of CN. This approach offers a fresh perspective on the problem.

Determining perpendicular slope

OK, let me see. The slope of CN is about -1.214. Closest I get for the negative reciprocal is around +0.823, which I’ll use for further analyses.

Calculating intersections

I'm pinpointing the intersection of lines y = -6.82x + 3.8 and y = 0.823x - 1.12. This helps identify circumcenter Q and enables further analysis of slopes.

Unveiling intersections

I’m mapping out the intersections of lines y = -6.82x - 0.053365 and y = 0.823x - 1.370995. This leads me to the circumcenter Q, aiding further slope analysis.

Charting intersections

I’m piecing together the intersections of lines y = -6.82x - 0.053365 and y = 0.823x + 0.169005. This reveals circumcenter Q and helps understand slope relationships.

Calculating slopes

I’m figuring out slopes for OQ and MN using intersections and points. The product consistently hovers around -5, even with different slopes like m=2. Progress is evident in the results.

Cracking intersections

I’m piecing together intersection points M and N with the ellipse, map out the midpoint of CM, and analyze perpendicular slopes. This method ensures accurate findings.

Pulling together

I'm calculating slopes for CM and CN, pinpointing intersection Q, and solving equations for perpendicular slopes. This approach ensures a clear, consistent outcome.

Finding intersections

I’m looking at the intersection of two lines, solving the equations for values and pinpointing the circumcenter Q of triangle CMN with coordinates around (-0.045, 0.1125).

Confirming constancy

Piecing together slope intersections with the ellipse, I find the product of slopes OQ and MN is consistently around -5, suggesting constancy. Now, I’m testing to confirm this.

Confirming the constant

Interestingly enough, I’ve observed that the product of slopes OQ and MN is consistently -5 for any line passing through D on the ellipse. This seems to be a reliable conclusion.

Thought for 7m 6s

Antwort

分析思路概要:

题目给出椭圆

E:x29+y28=1,E:\quad \frac{x^2}{9}+\frac{y^2}{8}=1,

以及三个定点

C=(3,0),D=(2,0),O=(0,0),C=(-3,0),\quad D=(2,0),\quad O=(0,0),

并规定过 DD 的任意一条动直线与椭圆 EE 相交于 M,NM,N 两点。令三角形 CMNCMN 的外心(即其外接圆圆心)为 QQ,问题是:

直线 OQOQ 与直线 MNMN 的斜率之积是否为定值?若是,求出该定值;若否,请说明原因。

下面给出一种较直接的坐标几何求解方法,并验证所得结果。


1. 用斜率参变量描述弦 MNMN

令过点 D=(2,0)D=(2,0) 的动直线斜率为 mm,则该直线方程可写为

y=m(x2).y=m(x-2).

它与椭圆

x29+y28=1\frac{x^2}{9}+\frac{y^2}{8}=1

相交,即满足

x29+(m(x2))28=1.\frac{x^2}{9}+\frac{(m(x-2))^2}{8}=1.

展开化简后可求得两个交点 (x1,y1)(x_1,y_1)(x2,y2)(x_2,y_2),这就是所求的 MMNN。不难看出,直线 MNMN 的斜率即为

slope(MN)=m.\text{slope}(MN)=m.

2. 三角形 CMNCMN 的外心 QQ 的坐标表示

C=(3,0),M=(x1,y1),N=(x2,y2).C=(-3,0),\quad M=(x_1,y_1),\quad N=(x_2,y_2).

三角形 CMNCMN 的外心 QQ 是过 C,M,NC,M,N 这三个点的圆的圆心。若我们用一般圆方程

x2+y2+px+qy+r=0x^2+y^2+p\,x+q\,y+r=0

去拟合「过 C,M,NC, M, N 的圆」,再由「圆心坐标」与 (p,q)(p,q) 的关系即可求得 Q=(p2,q2)Q=(-\tfrac{p}{2},-\tfrac{q}{2})。不过直接带入三点求解会比较繁琐。

更常见(也更“几何”)的做法是利用外心是三边垂直平分线的交点这一性质:

  1. 先分别写出线段 CMCMCNCN 的中点,再写出它们的斜率并取负倒数,得到各自垂直平分线方程;
  2. 解这两条垂直平分线的交点,即可得到 QQ

3. 先做数值实验,猜测斜率积是否恒定

为了判断“slope(OQ)×slope(MN)\text{slope}(OQ)\times \text{slope}(MN)”是否为常数,可以先选取若干不同的斜率 mm,做数值计算,看看结果是否稳定。

3.1 例 1:m=1m=1

  1. 求交点 M,NM,N

    直线方程 y=x2y = x-2,与椭圆

    x29+(x2)28=1\frac{x^2}{9}+\frac{(x-2)^2}{8}=1

    联立,化简后得到一元二次方程

    17x2    36x    36  =  0,17x^2 \;-\;36x\;-\;36\;=\;0,

    解得

    x1,2  =  36±610434  =  18±310417,x_{1,2} \;=\; \frac{36\pm 6\sqrt{104}}{34} \;=\; \frac{18\pm 3\sqrt{104}}{17},

    从而

    y1,2  =  x1,22.y_{1,2} \;=\; x_{1,2}-2.

    得到两点 M=(x1,y1)M=(x_1,y_1)N=(x2,y2)N=(x_2,y_2)

  2. 求外心 QQ

    • C=(3,0)C=(-3,0)
    • 分别求 C ⁣MC\!M 的中点、斜率、再取负倒数做垂直平分线;
    • 同理求 C ⁣NC\!N 的垂直平分线;
    • 两条垂直平分线交点即为 QQ

    做具体数值后(略去细节),可得

    Q(0.0291,0.1450).Q\approx(-0.0291,\,0.1450).
  3. slope(OQ)\text{slope}(OQ) 并与 slope(MN)\text{slope}(MN) 相乘

    • O=(0,0)O=(0,0)Q(0.0291,0.1450)Q\approx(-0.0291,0.1450),则 slope(OQ)  =  0.145000.02910    5.0.\text{slope}(OQ) \;=\; \frac{0.1450 - 0}{-0.0291-0} \;\approx\; -5.0.
    • slope(MN)=m=1\text{slope}(MN)=m=1,故 slope(OQ)  ×  slope(MN)    (5.0)×1  =  5.\text{slope}(OQ)\;\times\;\text{slope}(MN) \;\approx\; (-5.0)\times 1 \;=\; -5.

3.2 例 2:m=2m=2

做同样的步骤,求得

slope(MN)=2,slope(OQ)2.5,\text{slope}(MN)=2,\quad \text{slope}(OQ)\approx -2.5,

二者乘积仍约为

5.-5.

3.3 其它 mm 的测试

再测试 m=1m=-1 等其他值,都会得到相同的规律:

slope(OQ)×slope(MN)    5.\text{slope}(OQ)\times\text{slope}(MN)\;\approx\;-5.

由此我们强烈猜测:对于任意斜率 mm,只要弦 MNMN 经过 D=(2,0)D=(2,0),则三角形 CMNCMN 的外心 QQ 所满足

slope(OQ)  ×  slope(MN)\text{slope}(OQ)\;\times\;\text{slope}(MN)

总是一个不变的常数,并且该常数数值为 5-5


4. 结论

  • 答案:直线 OQOQ 与直线 MNMN 的斜率之积确为常数,其值为

    5. -5.
  • 几何上可以解释为:当弦 MNMN 经过一个固定的椭圆内点(此处是 DD),并且还固定一个与椭圆上的定点 CC 构造三角形,则该三角形的外心相对于原点 OO 的“连线方向”会与弦 MNMN 呈一种共轭关系,最终导致二者斜率之积保持不变。虽然可以用更高阶的“极与对偶”等方法解释,但用坐标运算与数值验证已经足以确立结果。


补充

若要在考场/作业中做严谨推导,通常可以:

  1. 直接做符号运算:设弦 MNMN 斜率 mm,解出 MMNN 的坐标表达式;
  2. 写出三角形 CMNCMN 的外接圆方程(或用外心坐标的行列式公式);
  3. 由此解出 Q=(p2,q2)Q=(-\tfrac p2,-\tfrac q2) 的显式,再计算 slope(OQ)=q/2p/2=qp\text{slope}(OQ)=\frac{-q/2}{-p/2}=\frac{q}{p}
  4. mm 相乘后化简,发现与 mm 无关,得到恒为 5-5

由于完整的代数细节较为繁琐,常用数值实验 + 关键代数步骤 的方式即可说明问题。


最终回答

结论:不论过点 D=(2,0)D=(2,0) 的那条弦 MNMN 如何变化,只要它与椭圆 x29+y28=1\tfrac{x^2}{9}+\tfrac{y^2}{8}=1 相交于 M,NM,N,并取定点 C=(3,0)C=(-3,0) 构造三角形 CMNCMN,其外心 QQ 与原点 OO 连线的斜率与弦 MNMN 的斜率之积都保持为一常数,其数值为

5.\boxed{-5}.

Diesen Q&A teilen