Числа для уравнения синуса

Erstellt am: 15. Januar 2025

Beantwortet mit OpenAI 01 von OpenAI01

Frage

Найдите число упорядоченных пар натуральных чисел (m,n)
таких, что 1⩽m<n⩽30
и уравнение
sin(nx)+sin(mx)=2
имеет решение.

Gedanke

Examining sine equations

I’m focusing on pairs (m, n) to find when sin(nx) + sin(mx) = 2 solutions exist, using trigonometric relationships.

Isolating variables

OK, let me see. By isolating variables and rearranging terms, we convert the sine equation into a product form. This shifts the problem to finding integer solutions for k and l.

Recasting the equation

I’m working through the idea of treating 1+4k and 1+4l as odd numbers. Both terms are congruent to 1 mod 4, which simplifies the equation.

Comparing patterns

I’m working through the ratio of integers congruent to 1 mod 4 and aligning series of sines to pinpoint commonalities in their x values.

Recasting the equation

By defining P = 1 + 4p and Q = 1 + 4q, I’m making progress in analyzing the equation, focusing on their integer solutions without sign restrictions.

Mapping out integer ratios

I’m noting that P and Q, integers congruent to 1 mod 4, can be either positive or negative. Interestingly, P and Q shouldn't be zero, considering the equation's constraints.

Linking rational ratios

I'm thinking through whether n/m can be expressed as P/Q with P and Q congruent to 1 mod 4, and ensuring gcd(a, b) = 1 so that a divides P and b divides Q.

Solving for k

I’m considering the congruences a * k ≡ 1 (mod 4) and b * k ≡ 1 (mod 4). I need to find an integer k that satisfies both, ensuring a divides P and b divides Q.

Ensuring integer alignment

I’m mapping out the condition for n/m to be represented as a ratio of two integers congruent to 1 mod 4. It hinges on a ≡ b (mod 4) so k can be determined.

Ensuring valid inverses

OK, I’m pulling together that for a valid inverse mod 4, a and b need to be both odd, specifically congruent to 1 or 3 mod 4, ensuring gcd(a, 4)=1.

Ensuring congruence

Made sure a and b are both odd and either 1 or 3 mod 4. This leads to a valid ratio that can be expressed with P and Q as integers congruent to 1 mod 4.

Ensuring oddity

OK, let me see. For a valid ratio, both a and b must be odd and congruent to 1 or 3 mod 4, ensuring gcd(a, 4)=1 and a valid inverse mod 4.

Ensuring integer alignment

I’m confirming that a and b are both odd and congruent to 1 or 3 mod 4, establishing gcd(a, b) = 1 and aligning with the condition for a valid solution x.

Ensuring valid pairs

I’m pulling together that for n/m to simplify to a valid ratio with P and Q both congruent to 1 mod 4, n' and m' must be odd and congruent to 1 mod 4.

Identifying valid pairs

I’m focusing on pairs (m, n) where gcd(n, m) = d, ensuring n' and m' are odd and congruent to 1 mod 4. This method ensures valid solutions.

Evaluating factors

OK, let me see. For n/m to simplify to an odd ratio, n and m must share the same power of 2, ensuring n' and m' are odd and congruent to 1 mod 4.

Ensuring oddity

I’m digging into how n and m must have the same greatest power of 2. After factoring this out, n' and m' are left as odd numbers congruent to 1 mod 4.

Defining key functions

I’m mapping out functions to isolate odd prime factors and reduce gcd, ensuring m' and n' are odd and congruent to 1 mod 4.

Ensuring odd alignment

I’m thinking through pairs (m, n) where odd parts m' and n' are aligned mod 4. By iterating and reducing by gcd, I systematically count valid pairs.

Separating odd and 2-exponent parts

I’m thinking about how classifying each integer by its 2-exponent and reduced odd part mod 4 helps identify valid pairs. This method will streamline the process.

Classifying numbers

I’m piecing together 2-exponent classifications. For instance, x=2 is even but not a multiple of 4, and we classify its odd part's behavior mod 4.

Classifying and mapping

I’m working through the odd multiples of 2 up to 30, classifying them under r=1. This approach identifies numbers with an odd part modulo 4.

Analyzing even multiples

I'm examining even numbers and their multiples of 2 or 4. Interestingly, odd multiples of these show specific patterns in their modulo 4 results.

Defining subsets

I’m focusing on subsets of integers with specific 2-exponents. By defining functions to isolate odd parts and reduce gcd, I ensure that m' and n' are both congruent to 1 mod 4.

Aligning odd parts

Mapping out pairs (m, n) in each subset such that their reduced gcd results are congruent mod 4. This ensures valid pairs are identified for further analysis.

Simplifying reduction

To address odd divisors and non-invertible factors, a function will determine the residue class mod 4 after reduction, ensuring accurate alignment of the reduced values.

Aligning residues

OK, let me see. If gcd(n, m) is odd, dividing by it in mod 4 doesn’t change the residue class, so n and m are effectively congruent mod 4.

Cracking the code

I'm piecing together ordered pairs (m, n) with m < n from subsets O1 and O3. By counting valid pairs, I find 49 for r=0.

Tweaking my approach

I’m figuring out that for r=1, focusing on pairs (m, n) with both elements even and their odd parts odd, ensures n' ≡ m' (mod 4). This keeps the equation valid.

Mapping valid pairs

I'm classifying integers for r=1 by identifying pairs (m, n) where their odd parts are odd and congruent to each other mod 4. This ensures a valid equation for sin(nx) + sin(mx) = 2.

Charting progress

Moving through pairs (m, n) for r=2, I find they share the same subset if their odd parts are congruent to each other mod 4. This results in 6 valid pairs.

Assessing valid pairs

I’m examining pairs (m, n) for r=3 and r=4. Interestingly, only r=2 yields valid pairs, confirmed by checking subset congruencies mod 4.

Thought about упорядоченные пары чисел por 3m 35s

Antwort

Разбор задачи

Нужно найти количество упорядоченных пар натуральных чисел (m,n)(m,n) таких, что 1m<n301 \le m < n \le 30 и уравнение

sin(nx)+sin(mx)  =  2\sin(nx) + \sin(mx) \;=\; 2

имеет решение по xx.


1. Когда сумма синусов равна 2?

Известно, что 1sin(θ)1-1 \le \sin(\theta) \le 1 для любых действительных θ\theta.
Чтобы

sin(nx)+sin(mx)=2,\sin(nx) + \sin(mx) = 2,

нам нужно

sin(nx)=1иsin(mx)=1.\sin(nx) = 1 \quad\text{и}\quad \sin(mx) = 1.

А это значит, что для некоторых целых k,k, \ell выполняется

nx=π2+2πk,mx=π2+2π.nx = \tfrac{\pi}{2} + 2\pi k, \quad mx = \tfrac{\pi}{2} + 2\pi \ell.

Таким образом, одно и то же xx должно удовлетворять сразу двум условиям:

x=π2+2πkn=π2+2πm.x = \frac{\tfrac{\pi}{2} + 2\pi k}{n} = \frac{\tfrac{\pi}{2} + 2\pi \ell}{m}.

Эквивалентно,

π/2+2πkn  =  π/2+2πm.\frac{\pi/2 + 2\pi k}{n} \;=\; \frac{\pi/2 + 2\pi \ell}{m}.

Вынеся π\pi за скобку и сократив, приходим к соотношению

m(12+2k)  =  n(12+2).m\Bigl(\tfrac12 + 2k\Bigr) \;=\; n\Bigl(\tfrac12 + 2\ell\Bigr).

Или, если обозначить 1+4k=P1 + 4k = P, 1+4=Q1 + 4\ell = Q (оба – целые числа, сравнимые с 1 по модулю 4), то

mP  =  nQ,P1(mod4),Q1(mod4).m\,P \;=\; n\,Q, \quad P \equiv 1 \pmod{4}, \quad Q \equiv 1 \pmod{4}.

Таким образом, необходимо (и достаточно), чтобы отношение nm\tfrac{n}{m} представимо в виде PQ\tfrac{P}{Q} с PQ1(mod4)P \equiv Q \equiv 1 \pmod{4}.


2. Когда nm=PQ\tfrac{n}{m} = \tfrac{P}{Q} с PQ1(mod4)P \equiv Q \equiv 1 \pmod{4}?

Пусть nm=ab\tfrac{n}{m} = \tfrac{a}{b} в несократимом виде (gcd(a,b)=1\gcd(a,b)=1). Тогда условие

ab  =  PQ,P1(mod4),Q1(mod4)\frac{a}{b} \;=\; \frac{P}{Q}, \quad P \equiv 1 \pmod{4}, \quad Q \equiv 1 \pmod{4}

эквивалентно существованию такого целого kk, что

P=ak,Q=bk,ak1(mod4),    bk1(mod4).P = a\,k,\quad Q = b\,k, \quad a\,k \equiv 1 \pmod{4},\;\; b\,k \equiv 1 \pmod{4}.

Чтобы оба сравнения были выполнимы с одним и тем же kk, нужно

ab(mod4)(и при этом и a,b – нечётные, чтобы иметь обратный элемент по модулю 4).a \equiv b \pmod{4} \quad \text{(и при этом и }a,b\text{ – нечётные, чтобы иметь обратный элемент по модулю 4).}

Другими словами, в несократимой дроби ab\tfrac{a}{b} оба числа должны быть нечётными и совпадать по модулю 4 (то есть либо оба 1 ⁣(mod4)\equiv 1\!\pmod{4}, либо оба 3 ⁣(mod4)\equiv 3\!\pmod{4}).


3. Переход к nm\tfrac{n}{m} непосредственно

Чтобы nm\tfrac{n}{m} в несократимом виде имела оба числителя и знаменатель нечётными, необходимо:

  1. Одинаковая степень двойки у nn и mm. Иначе при сокращении часть «двойки» останется сверху или снизу, и в несократимой дроби a/ba/b одна из величин окажется чётной.
  2. После «выброса» общей степени двойки и всех общих нечётных делителей (то есть сделав nm\tfrac{n}{m} несократимой), полученные остатки (n,m)(n',m') (оба нечётные) должны совпадать по модулю 4.

Если v2(x)v_2(x) обозначает «сколько раз 2 входит в xx», то условие 1 означает:

v2(m)  =  v2(n).v_2(m) \;=\; v_2(n).

Обозначим это общее значение за rr. Тогда

m=2rm1,n=2rn1,m = 2^r\,m_1,\quad n = 2^r\,n_1,

где m1,n1m_1,n_1 — нечётные. Пусть далее d=gcd(m1,n1)d = \gcd(m_1,n_1) (он тоже нечётный), тогда

m=m1d,n=n1d.m' = \frac{m_1}{d},\quad n' = \frac{n_1}{d}.

Оба mm' и nn' остаются нечётными, а деление на нечётный dd не искажает сравнение «по модулю 4». Значит, условие 2 сводится к

nm(mod4).n' \equiv m' \pmod{4}.

4. Подсчёт пар (m,n)(m,n) при 1m<n301 \le m < n \le 30

Разобьём все числа 1,2,,301,2,\dots,30 по классам в зависимости от r=v2(x)r = v_2(x).

Случай r=0r=0 (числа нечётные)

  • Все нечётные x{1,3,5,7,,29}x \in \{1,3,5,7,\dots,29\}.
  • Их остатки по модулю 4 бывают либо 11, либо 33.
    • Множество O1={1,5,9,13,17,21,25,29}O_1 = \{1,5,9,13,17,21,25,29\} (1(mod4)1 \pmod{4}), в нём 8 элементов.
    • Множество O3={3,7,11,15,19,23,27}O_3 = \{3,7,11,15,19,23,27\} (3(mod4)3 \pmod{4}), в нём 7 элементов.

Чтобы mm и nn дали нужное nm(mod4)n' \equiv m' \pmod{4}, достаточно mn(mod4)m \equiv n \pmod{4} (ведь gcd(m,n)\gcd(m,n) — тоже нечётное и «не мешает»).

  • Пар (m,n)(m,n) с m<nm<n и m,nO1m,n \in O_1: это (82)=28\binom{8}{2} = 28.
  • Пар (m,n)(m,n) с m<nm<n и m,nO3m,n \in O_3: это (72)=21\binom{7}{2} = 21.

Итого при r=0r=0: 28+21=4928 + 21 = 49 подходящих пар.

Случай r=1r=1 (числа вида 2(нечётное)2 \cdot \text{(нечётное)})

  • Это {2,6,10,14,18,22,26,30} \{2,6,10,14,18,22,26,30\}.
  • Пусть x=2kx = 2k, где kk — нечётное, k{1,3,5,7,9,11,13,15}k \in \{1,3,5,7,9,11,13,15\}.
    По модулю 4, само kk либо 11, либо 33.
    • Если k1(mod4)k \equiv 1 \pmod{4}, то x{2,10,18,26}x \in \{2,10,18,26\}.
    • Если k3(mod4)k \equiv 3 \pmod{4}, то x{6,14,22,30}x \in \{6,14,22,30\}.

Чтобы m1n1(mod4)m_1 \equiv n_1 \pmod{4}, надо брать числа из одной «подгруппы».

  • В {2,10,18,26}\{2,10,18,26\} ровно 4 элемента, число пар (m,n)(m,n) с m<nm<n есть (42)=6\binom{4}{2} = 6.
  • В {6,14,22,30}\{6,14,22,30\} тоже 4 элемента, пар (42)=6\binom{4}{2} = 6.

Итого при r=1r=1: 6+6=126 + 6 = 12 подходящих пар.

Случай r=2r=2 (числа вида 4(нечётное)4 \cdot \text{(нечётное)})

  • Это {4,12,20,28}\{4,12,20,28\}.
  • Делим на 44: получаем нечётные {1,3,5,7}\{1,3,5,7\}.
    • 1(mod4)1 \pmod{4} дают 44 и 2020.
    • 3(mod4)3 \pmod{4} дают 1212 и 2828.

Из каждой «подгруппы» по 2 элемента, значит по одной паре (m<n)(m<n) в каждой.

  • {4,20}\{4,20\} даёт 1 пару: (4,20)(4,20).
  • {12,28}\{12,28\} даёт 1 пару: (12,28)(12,28).

Итого при r=2r=2: 1+1=21 + 1 = 2 пары.

Случай r=3r=3 (числа вида 8(нечётное)8 \cdot \text{(нечётное)})

  • Это {8,24}\{8,24\}. При делении на 88 получаем {1,3}\{1,3\}. Они не совпадают по модулю 4,
    значит пар, удовлетворя условию, нет.

Случай r=4r=4 (числа вида 16(нечётное)16 \cdot \text{(нечётное)})

  • В диапазоне до 30 есть только 1616. Пар (m,n)(m,n) с m<nm<n отсюда взять нельзя (одно число).

5. Суммарный результат

Складывая результаты по всем случаям rr:

  • r=0r=0: 4949 пар
  • r=1r=1: 1212 пар
  • r=2r=2: 22 пары
  • r=3r=3: 00 пар
  • r=4r=4: 00 пар
49+12+2=63.\boxed{49 + 12 + 2 = 63.}

Ответ: 63.

Diesen Q&A teilen