реши

تم الإنشاء في: ١٠ فبراير ٢٠٢٦

تمت الإجابة باستخدام GPT-5.2 Thinking بواسطة Chat01

سؤال

snimok-ekrana-2026-02-06-v-00-21-00-89744d61-640c-4d05-989b-9d3418f35c1c.pngsnimok-ekrana-2026-02-06-v-00-21-00-89744d61-640c-4d05-989b-9d3418f35c1c.png

реши

الفكرة

Solving for coefficient sum with y present

To find the sum of the coefficients of terms containing y in the expansion of (x + y − z)^11, we can use a common trick where all variables are set to 1. For the full polynomial, P(1,1,1) evaluates to 1. To focus on terms with y, we compute the total sum minus the sum from terms without y.

Verifying coefficient sum for terms with y

To find the sum of coefficients of terms containing y, I set y=0 and evaluate the polynomial. P(1,0,1) equals 0, so the sum of terms containing y is 1 (from the total sum of coefficients minus the sum from terms without y). This result seems correct, and I’ll confirm by double-checking via a combinatorial approach.

Thought for 20s

الإجابة

Пусть P(x,y,z)=(x+yz)11P(x,y,z)=(x+y-z)^{11}.

  • Сумма всех коэффициентов многочлена равна P(1,1,1)P(1,1,1):
P(1,1,1)=(1+11)11=111=1.P(1,1,1)=(1+1-1)^{11}=1^{11}=1.
  • Сумма коэффициентов при одночленах, не содержащих yy (то есть при y0y^0) равна P(1,0,1)P(1,0,1), потому что при y=0y=0 все члены с yy исчезают:
P(1,0,1)=(1+01)11=011=0.P(1,0,1)=(1+0-1)^{11}=0^{11}=0.

Тогда сумма коэффициентов при одночленах, содержащих yy:

10=1.1-0=1.

Ответ: 1\boxed{1}.

مشاركة هذا السؤال والجواب