при каких значениях параметра `a` уравнение `(2abs...

تم الإنشاء في: ٢٤ ديسمبر ٢٠٢٥

تمت الإجابة باستخدام GPT-5.2 Thinking بواسطة Chat01

سؤال

при каких значениях параметра a уравнение (2absx+2)/(absx-1)=a не имеет корней.

الفكرة

Analyzing the equation for solution existence

We are solving for values of aa where the equation has no solutions. By analyzing the function g(t)=2(t+1)t1g(t) = \frac{2(t+1)}{t-1}, we determine its range for t0,t1t \geq 0, t \neq 1. g(t)g(t) decreases to values greater than 2 from infinity, meaning values of aa greater than 2 result in no solutions.

Analyzing solution intervals for the equation

For t[0,1)t \in [0,1), the range of g(t)g(t) is (,2](-\infty, -2]. As tt approaches 1 from the left, the function heads toward negative infinity. Combining this with the range (2,)(2, \infty) for t>1t > 1, the solutions exist if a(,2](2,)a \in (-\infty, -2] \cup (2, \infty), with no solutions for a(2,2]a \in (-2, 2].

Determining solution conditions for aa

If a<2a < -2, there is a solution. At a=2a = -2, x=0x = 0 is a solution, so a=2a = -2 works. However, for aa between -2 and 2 (excluding -2 but including 2), there are no solutions. Using the formula and the range method is more efficient for this analysis.

Thought for 19s

الإجابة

Положим t=xt=|x|, тогда t0t\ge 0 и t1t\ne 1. Уравнение

2x+2x1=a2t+2t1=a.\frac{2|x|+2}{|x|-1}=a \quad\Longleftrightarrow\quad \frac{2t+2}{t-1}=a.

Если a2a\ne 2, решаем по tt:

2t+2=a(t1)=ata    (2a)t=(a+2)    t=a+2a2.2t+2 = a(t-1)=at-a \;\Longrightarrow\; (2-a)t=-(a+2) \;\Longrightarrow\; t=\frac{a+2}{a-2}.

Нужны условия существования tt из области: t0t\ge 0 (и автоматически t1t\ne 1, т.к. t=1t=1 тут невозможен).

a+2a20    a2  или  a>2.\frac{a+2}{a-2}\ge 0 \;\Longleftrightarrow\; a\le -2 \;\text{или}\; a>2.

Отдельно a=2a=2: 2t+2t1=22t+2=2t2\frac{2t+2}{t-1}=2 \Rightarrow 2t+2=2t-2, противоречие, решений нет.

Значит, корней нет при

2<a2.\boxed{\, -2<a\le 2 \, }.

مشاركة هذا السؤال والجواب