Реши на с++

تم الإنشاء في: ٢٤ أكتوبر ٢٠٢٥

تمت الإجابة باستخدام GPT-5 Thinking بواسطة Chat01

سؤال

IMG_20251024_155023_591.jpgIMG_20251024_155023_591.jpg

Реши на с++

الفكرة

Maximizing balanced teams

I need to figure out how to help form teams of three, where all teams have the same sum of medals. The students' medal counts are 0, 1, and 2. The challenge is to maximize the number of teams (k) that can be formed while ensuring that the sum of each team's medals is the same, which could range from 0 to 6.

Testing team combinations

Alright, I'm trying to figure out the combinations of students for teams of 3, such that the sum of medals equals a specific value, s. I need to explore different ways to assign zeros, ones, and twos to the team members while considering the constraints. It looks like there could be multiple valid combinations for each sum, like (0, 3, 0) or (1, 1, 1) for a sum of 3, and I need to verify these systematically.

Maximizing teams with specific sum

It’s becoming clearer: for each sum s, I need to find multiple ways to form teams while ensuring each team's total medals equal s. Then, I determine the maximum number of such teams I can form. It's like an integer problem, but simplified, so I can use greedy methods. For example, for a sum of 1, the composition might need two zeros and one one, and I’ll be restricted by how many we have of each.

Finding sum 2 combinations

For a sum of 2, there are a few possible team compositions: (2 zeros, 1 two) or (1 zero, 2 ones). Each composition uses exactly three students. To maximize the number of teams with this sum, I need to check how many teams I can form by mixing these patterns and adjusting their counts accordingly.

Maximizing teams for sum 2

To maximize teams with sum 2, we have to balance two possible patterns: (2 zeros, 1 two) and (1 zero, 2 ones). The goal is to find an optimal combination of both patterns. I can calculate the maximum number of teams (k) by considering constraints like available zeros, ones, and twos, and choose values for each pattern accordingly.

Maximizing teams for sum 3

For sum 3, I’m looking at two patterns: (1,1,1) and (0,3,0). To maximize teams, I must balance x (number of (1,1,1) teams) and y (number of (0,3,0) teams) within constraints on zeros, ones, and twos. The key is to choose x as large as possible, within capacity, while adding y in case ones are abundant. I'll consider integer steps and floor-based adjustments to optimize results.

Optimizing team combinations

To maximize the number of teams, I’m selecting between two types of teams with balancing constraints on zeros, ones, and twos. For each, I compute optimal values for x and y while checking bounds. I'm exploring candidates near boundary values to make sure I capture the maximum possible k. This process involves adjusting for Xmax and leftover resources.

Maximizing teams in C++

To maximize team composition, I'm computing optimal values of x and y based on specific constraints (like the number of zeros, ones, twos). I evaluate possible candidate values near critical boundaries, considering the effects of different configurations. The goal is to maximize k while respecting limits on the resources available. I'll then compute the necessary values using a minimal C++ implementation.

Thought for 4m 12s

الإجابة

Вот короткое и надёжное решение. Идея: у команды из 3 человек возможны только такие наборы медалей (0/1/2 на участника) и, соответственно, суммы сил:

  • 0: (3,0,0)
  • 1: (2,1,0)
  • 2: (2,0,1) или (1,2,0)
  • 3: (1,1,1) или (0,3,0)
  • 4: (1,0,2) или (0,2,1)
  • 5: (0,1,2)
  • 6: (0,0,3)

Для каждой суммы отдельно считаем максимум возможных команд (можно смешивать варианты с одной и той же суммой), затем берём максимум по всем суммам. Случаи 0,1,5,6 считаются напрямую; для 2,3,4 — небольшая «переборка» по 2–3 кандидатам, чтобы учесть целочисленные ограничения.

cpp
#include <bits/stdc++.h> using namespace std; using int64 = long long; static inline int64 clamp_to(int64 x, int64 lo, int64 hi){ if (x < lo) return lo; if (x > hi) return hi; return x; } // max команд с суммой 2: комбинации (2,0,1) и (1,2,0) int64 sum2(int64 c0, int64 c1, int64 c2){ int64 A = c1 / 2; // максимум (1,2,0) по единичкам int64 Xmax = min(c2, c0 / 2); // максимум (2,0,1) по двойкам и нулям vector<int64> cand; cand.push_back(0); cand.push_back(Xmax); // граница, где ограничение по нулям сменяет ограничение по единичкам int64 x0 = (c0 - A) / 2; cand.push_back(clamp_to(x0, 0, Xmax)); cand.push_back(clamp_to(x0 + 1, 0, Xmax)); int64 best = 0; for (int64 x : cand) { int64 y = min(A, c0 - 2*x); // по нулям и единичкам if (y < 0) y = 0; best = max(best, x + y); } return best; } // max команд с суммой 3: (1,1,1) и (0,3,0) int64 sum3(int64 c0, int64 c1, int64 c2){ int64 Xmax = min({c0, c1, c2}); // столько трёхцветных команд (1,1,1) максимально по ресурсам int64 best = 0; // Достаточно проверить Xmax и пару ближайших значений из-за деления на 3 for (int d = 0; d <= 2; ++d) { int64 x = (Xmax >= d) ? (Xmax - d) : 0; int64 ones_left = c1 - x; if (ones_left < 0) continue; int64 y = ones_left / 3; // (0,3,0) best = max(best, x + y); } return best; } // max команд с суммой 4: (1,0,2) и (0,2,1) — симметрия к сумме 2 (ноль <-> двойка) int64 sum4(int64 c0, int64 c1, int64 c2){ int64 A = c1 / 2; // максимум (0,2,1) по единичкам int64 Xmax = min(c0, c2 / 2); // максимум (1,0,2) по нулям и двойкам vector<int64> cand; cand.push_back(0); cand.push_back(Xmax); int64 x0 = (c2 - A) / 2; cand.push_back(clamp_to(x0, 0, Xmax)); cand.push_back(clamp_to(x0 + 1, 0, Xmax)); int64 best = 0; for (int64 x : cand) { int64 y = min(A, c2 - 2*x); // по двойкам и единичкам if (y < 0) y = 0; best = max(best, x + y); } return best; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int64 c0, c1, c2; if (!(cin >> c0 >> c1 >> c2)) return 0; int64 ans = 0; // суммы 0,1,5,6 — прямые формулы ans = max(ans, c0 / 3); // sum=0: (3,0,0) ans = max(ans, min(c0 / 2, c1)); // sum=1: (2,1,0) ans = max(ans, sum2(c0, c1, c2)); // sum=2 ans = max(ans, sum3(c0, c1, c2)); // sum=3 ans = max(ans, sum4(c0, c1, c2)); // sum=4 ans = max(ans, min(c1, c2 / 2)); // sum=5: (0,1,2) ans = max(ans, c2 / 3); // sum=6: (0,0,3) cout << ans << "\n"; return 0; }

Алгоритм работает за O(1) и корректен для любых 0 ≤ c0, c1, c2 ≤ 10^9.

مشاركة هذا السؤال والجواب