In triangle ABC, angles BAC and BCA = 80°, AB= BC ...

تم الإنشاء في: ١١ أكتوبر ٢٠٢٥

تمت الإجابة باستخدام GPT-5 Thinking بواسطة Chat01

سؤال

In triangle ABC, angles BAC and BCA = 80°, AB= BC = 1/(2cos10°-√3). On side AB, there is a point E and on side BC, there is a point D, angle CAD = 50°, and angle ACE = 60°. Find ED

Python

python
import sympy as sp sp.nsimplify(1/(2*sp.cos(sp.rad(10)) - sp.sqrt(3))) 1/(-sqrt(3) + 2*cos(pi/18))

Python

python
import sympy as sp deg = sp.pi/180 b = 1/(2*sp.cos(10*deg) - sp.sqrt(3)) b_n = sp.N(b,50) b_n 4.2093796195361659048780412331808185696886254299303

Python

python
import sympy as sp deg = sp.pi/180 b = sp.nsimplify(1/(2*sp.cos(10*deg) - sp.sqrt(3))) # Coordinates A = sp.Matrix([b, 0]) B = sp.Matrix([0, 0]) C = sp.Matrix([b*sp.cos(20*deg), b*sp.sin(20*deg)]) # Define function to rotate a vector by angle theta def rotate(v, theta): R = sp.Matrix([[sp.cos(theta), -sp.sin(theta)], [sp.sin(theta), sp.cos(theta)]]) return R*v # Compute E: line from C making angle 60° with CA CA = A - C # Two possible directions: rotate CA by +60° or -60° u1 = rotate(CA, 60*deg) u2 = rotate(CA, -60*deg) # Intersect lines C + t*u with y=0 t1 = sp.solve(sp.Eq((C + sp.Symbol('t')*u1)[1], 0), sp.Symbol('t')) t2 = sp.solve(sp.Eq((C + sp.Symbol('t')*u2)[1], 0), sp.Symbol('t')) t1, t2 ([2*sin(pi/9)/(-sqrt(3) + 2*cos(pi/18))], [2*sin(pi/9)/(-2*sin(2*pi/9) + sqrt(3))])

Python

python
t_sym = sp.Symbol('t') u1 = sp.simplify(u1) u2 = sp.simplify(u2) t1 = t1[0] t2 = t2[0] E1 = sp.simplify(C + t1*u1) E2 = sp.simplify(C + t2*u2) sp.N(E1), sp.N(E2), sp.N(b) (Matrix([ [7.91104593312946], [ 0]]), Matrix([ [2.23976411351175], [ 0]]), 4.20937961953617)

Python

python
# Direction from A AC = C - A v1 = rotate(AC, 50*deg) # rotate CCW from AC by +50 v2 = rotate(AC, -50*deg) # rotate CW by -50 # Param lines: L1 = A + u*v1; L2 = A + u*v2 u = sp.Symbol('u', real=True) s = sp.Symbol('s', real=True) lineBC = B + s*(C - B) # Solve for intersection with BC: find u and s s.t. A + u * v? = lineBC sol1 = sp.solve(sp.Eq(A + u*v1, lineBC), [u, s], dict=True) sol2 = sp.solve(sp.Eq(A + u*v2, lineBC), [u, s], dict=True) sol1, sol2 ([{s: -1 - 16*sin(pi/9)**4 + 16*sin(pi/9)**2, u: -40*sin(pi/9)**3 + 32*sin(pi/9)**5 + 8*sin(pi/9)}], [{s: 2 - 4*sin(pi/9)**2, u: -40*sin(pi/9)**3 + 32*sin(pi/9)**5 + 10*sin(pi/9)}])

Python

python
sol1_num = {k: sp.N(v) for k,v in sol1[0].items()} sol2_num = {k: sp.N(v) for k,v in sol2[0].items()} sol1_num, sol2_num ({s: 0.652703644666139, u: 1.28557521937308}, {s: 1.53208888623796, u: 1.96961550602442})

Python

python
s_val = sol1[0][s] D = sp.simplify(lineBC.subs(s, s_val)) E = sp.simplify(E2) ED_len = sp.sqrt(sp.simplify(sp.sum((D - E)**2))) sp.N(D), sp.N(E), sp.N(ED_len,50)

الفكرة

s_val = sol1[0][s] D = sp.simplify(lineBC.subs(s, s_val)) E = sp.simplify(E2) ED_len = sp.sqrt(sp.simplify(sp.sum((D - E)**2))) sp.N(D), sp.N(E), sp.N(ED_len,50)

Thought for 1m 1s

Python

python
ED_len = sp.sqrt(sp.simplify(((D - E).dot(D - E)))) sp.N(D), sp.N(E), sp.N(ED_len,50) (Matrix([ [ 2.58178425683742], [0.939692620785908]]), Matrix([ [2.23976411351175], [ 0]]), 1.0000000000000000000000000000000000000000000000000)

Python

python
import sympy as sp deg=sp.pi/180 x=sp.cos(20*deg) y=sp.cos(40*deg) S = sp.simplify(1/(4*x**2) + 1/(4*sp.cos(40*deg)**2) - 1/(2*sp.cos(40*deg))) sp.N(S,50) 0.056436985952271091082210843128870364384253903149490

Python

python
b = 1/(2*sp.cos(10*deg) - sp.sqrt(3)) float(b**2 * S) 1.0

Python

python
delta = sp.simplify(S - (2*sp.cos(10*deg) - sp.sqrt(3))**2) sp.simplify(delta) sp.N(delta,50) 0.e-168

الفكرة

delta = sp.simplify(S - (2sp.cos(10deg) - sp.sqrt(3))**2) sp.simplify(delta) sp.N(delta,50)

0.e-168

Thought for 1m 6s

الإجابة

ED = 1

Sketch of solution

Let ∠A = ∠C = 80°, so ∠B = 20°. Put AB=BC=bAB=BC=b (the problem gives b=12cos103b=\dfrac1{2\cos10^\circ-\sqrt3}).

  1. From ACE=60\angle ACE=60^\circ and ACB=80\angle ACB=80^\circ, we get ECB=20\angle ECB=20^\circ. Also EBC=ABC=20\angle EBC=\angle ABC=20^\circ.
    Hence in BEC\triangle BEC the base angles at BB and CC are equal, so EB=ECEB=EC.
    By the sine rule:

    EBsin20=BCsin140EB=EC=bsin20sin40=b2cos20.\frac{EB}{\sin20^\circ}=\frac{BC}{\sin140^\circ}\quad\Rightarrow\quad EB=EC=\frac{b\sin20^\circ}{\sin40^\circ}=\frac{b}{2\cos20^\circ}.
  2. From CAD=50\angle CAD=50^\circ and CAB=80\angle CAB=80^\circ, we get DAB=30\angle DAB=30^\circ. In ABD\triangle ABD: ABD=20, BAD=30\angle ABD=20^\circ,\ \angle BAD=30^\circ.
    By the sine rule:

    BDsin30=ABsin130BD=bsin30sin50=b2sin50=b2cos40.\frac{BD}{\sin30^\circ}=\frac{AB}{\sin130^\circ}\quad\Rightarrow\quad BD=\frac{b\sin30^\circ}{\sin50^\circ}=\frac{b}{2\sin50^\circ}=\frac{b}{2\cos40^\circ}.
  3. The angle between BEBE and BDBD at BB is EBD=ABC=20\angle EBD=\angle ABC=20^\circ. Apply the cosine law in EBD\triangle EBD:

    ED2=EB2+BD22EBBDcos20=b2 ⁣(14cos220+14cos24012cos40).ED^2=EB^2+BD^2-2\cdot EB\cdot BD\cos20^\circ =b^2\!\left(\frac1{4\cos^2 20^\circ}+\frac1{4\cos^2 40^\circ}-\frac1{2\cos40^\circ}\right).
  4. Using sin50=cos40\sin50^\circ=\cos40^\circ, sin40=2sin20cos20\sin40^\circ=2\sin20^\circ\cos20^\circ, and cos20=2cos2101 \cos20^\circ=2\cos^2 10^\circ-1 (plus cos320=12\cos3\cdot20^\circ=\frac12), the bracket simplifies to

    (2cos103)2.\left(2\cos10^\circ-\sqrt3\right)^2.

    Therefore

    ED2=b2(2cos103)2.ED^2=b^2\left(2\cos10^\circ-\sqrt3\right)^2.

With the given b=12cos103b=\dfrac1{2\cos10^\circ-\sqrt3}, we get ED2=1ED^2=1, hence ED=1ED=\boxed{1}.

مشاركة هذا السؤال والجواب