请详细讲解下题中最后一步如何开根号

تم الإنشاء في: ٨ يونيو ٢٠٢٥

تمت الإجابة باستخدام O3 بواسطة Chat01

سؤال

IMG_9387.jpegIMG_9387.jpeg

请详细讲解下题中最后一步如何开根号

Python

python
from PIL import Image import matplotlib.pyplot as plt img = Image.open('/mnt/data/IMG_9387.jpeg') plt.imshow(img); plt.axis('off') (-0.5, 954.5, 1949.5, -0.5)

Python

python
# crop bottom portion h = img.height w = img.width # crop bottom half 40% crop = img.crop((0, int(h*0.35), w, h)) plt.imshow(crop); plt.axis('off') (-0.5, 954.5, 1267.5, -0.5)

Python

python
crop2 = img.crop((0, int(h*0.55), w, h)) plt.imshow(crop2); plt.axis('off') (-0.5, 954.5, 877.5, -0.5)

Python

python
crop3 = img.crop((0, int(h*0.7), w, h)) plt.imshow(crop3); plt.axis('off') (-0.5, 954.5, 584.5, -0.5)

Python

python
# enlarge crop3 text lines plt.figure(figsize=(6,10)) plt.imshow(crop3) plt.axis('off') (-0.5, 954.5, 584.5, -0.5)

Python

python
import sympy as sp expr = sp.sqrt((6 + 3*sp.sqrt(3))**2 + 3**2) expr sqrt(9 + (3*sqrt(3) + 6)**2)

Python

python
sp.simplify(expr) 6*sqrt(sqrt(3) + 2)

Python

python
float(expr), float(3*sp.sqrt(6) + 3*sp.sqrt(2)) (11.59110991546882, 11.59110991546882)

Python

python
float(6*sp.sqrt(2 + sp.sqrt(3))), float(3*sp.sqrt(6) + 3*sp.sqrt(2)) (11.59110991546882, 11.59110991546882)

الفكرة

Verifying final simplification

Okay, I need to show that sqrt((6 + 3√3)^2 + 3^2) equals 3(√6 + √2), not 3√6 + 3√2. First, I calculated (6 + 3√3)^2 and simplified everything to show that it all factors into 6√(2 + √3). When I check numerically, it turns out they're indeed equal: 6√(2 + √3) does equal 3(√6 + √2). I'll need to show that sqrt(2 + √3) equals that mixed square root form. Let's give that one more check!

Simplifying the expression

I need to explain how sqrt((6 + 3√3)^2 + 3^2) simplifies. First, expand (6 + 3√3)^2 and add 9 to get 72 + 36√3, factor out 36, and simplify to 6√(2 + √3). Then, to simplify sqrt(2 + √3), I recognize it's of a form that I can rewrite as √6/2 + √2/2. That leads to the final result: BC = 3√6 + 3√2. So, I can explain the whole step where the formula correctly simplifies!

Thought for 1m 7s

الإجابة

下面把最后一步

BC=AH2+CH2=(6+33)2+32BC=\sqrt{AH^{2}+CH^{2}} =\sqrt{(6+3\sqrt3)^{2}+3^{2}}

中“开根号”的全过程拆得一清二楚。


1 展开并整理被开方数

(6+33)2=62+2633+(33)2=36+363+27=63+363.\begin{aligned} (6+3\sqrt3)^{2} &=6^{2}+2\cdot6\cdot3\sqrt3+(3\sqrt3)^{2}\\ &=36+36\sqrt3+27\\ &=63+36\sqrt3. \end{aligned}

再加上 32=93^{2}=9

63+363+9=72+363.63+36\sqrt3+9=72+36\sqrt3.

2 提取公因数

72+363=36(2+3).72+36\sqrt3=36\bigl(2+\sqrt3\bigr).

于是

(6+33)2+32=36(2+3)=62+3.\sqrt{(6+3\sqrt3)^{2}+3^{2}} =\sqrt{36\bigl(2+\sqrt3\bigr)} =6\,\sqrt{\,2+\sqrt3\,}.

3 化简 2+3\sqrt{\,2+\sqrt3\,}

2+3=m+n(mn>0).\sqrt{2+\sqrt3}= \sqrt m + \sqrt n\qquad(m\ge n>0).

两边平方得

m+n+2mn=2+3.m+n+2\sqrt{mn}=2+\sqrt3.

于是

{m+n=2,2mn=3    mn=34.\begin{cases} m+n=2,\\ 2\sqrt{mn}=\sqrt3\;\Longrightarrow\; mn=\dfrac34. \end{cases}

解这个二元一次方程组(或看成一元二次方程 t22t+34=0t^{2}-2t+\dfrac34=0 的根)得到

m=32,n=12.m=\dfrac32,\qquad n=\dfrac12.

因此

2+3=32+12=62+22=6+22.\sqrt{2+\sqrt3}= \sqrt{\dfrac32}+\sqrt{\dfrac12} =\dfrac{\sqrt6}{2}+\dfrac{\sqrt2}{2} =\frac{\sqrt6+\sqrt2}{2}.

4 回代并完成开根号

62+3=66+22=3(6+2)=36+32.6\,\sqrt{\,2+\sqrt3\,} =6\cdot\frac{\sqrt6+\sqrt2}{2} =3\bigl(\sqrt6+\sqrt2\bigr) =3\sqrt6+3\sqrt2.

所以

BC=(6+33)2+32=36+32.BC=\sqrt{(6+3\sqrt3)^{2}+3^{2}} =3\sqrt6+3\sqrt2.

5 得到 BE

题解随后又用 BE=BCCEBE=BC-CE,其中 CE=26CE=2\sqrt6,于是

BE=(36+32)26=6+32,BE=(3\sqrt6+3\sqrt2)-2\sqrt6=\sqrt6+3\sqrt2,

这正是答案。


关键:

  1. 先展开再通分,使根号里只剩一层根号;
  2. 提公因数 把整数平方因子拿到根号外;
  3. 用配方法/设根式拆分 化简形如 a+b\sqrt{a+\sqrt b} 的嵌套根式。

سؤال

有更易懂的方法吗?请使用初中生能理解的方法。

الفكرة

Explaining simpler method

The user asked for an easier way to explain the process, so I'll use a simpler approach. We need to find BC and BE without using complex methods. For the expression (6+33)2+32\sqrt{(6+3\sqrt{3})^2 + 3^2}, we start by expanding:
(6+33)2+32=36+363+27+9=72+363(6+3\sqrt{3})^2 + 3^2 = 36 + 36\sqrt{3} + 27 + 9 = 72 + 36\sqrt{3}.

Next, we factor out 36: 36(2+3)36(2 + \sqrt{3}).

Finally, taking the square root: 36(2+3)=6(2+3)\sqrt{36(2+\sqrt{3})} = 6\sqrt{(2+\sqrt{3})}.

Simplifying the square root process

To simplify 2+3\sqrt{2 + \sqrt{3}}, I can try a trick where I assume it equals a+b\sqrt{a} + \sqrt{b}, with simple values like fractions. Another idea comes from thinking about special right triangles. If we square (6+2)2(\sqrt{6} + \sqrt{2})^2, we get 8+438 + 4\sqrt{3}, which factors to 4(2+3)4(2 + \sqrt{3}). This helps us recognize that 2+3=6+22\sqrt{2 + \sqrt{3}} = \frac{\sqrt{6} + \sqrt{2}}{2}. Then, we can easily compute BC and BE.

Thought for 16 seconds

الإجابة

下面给出一个 “只用初中知识” 就能看懂的做法。关键点就是——

先把根号里整理干净,再 猜想 + 验证 把“双层根号”拆掉。


① 先把根号里算完

BC=(6+33)2+32BC=\sqrt{(6+3\sqrt3)^{2}+3^{2}}
  1. 展开平方

    (6+33)2=62+2 ⁣ ⁣6 ⁣ ⁣33+(33)2=36+363+27=63+363(6+3\sqrt3)^{2}=6^{2}+2\!\cdot\!6\!\cdot\!3\sqrt3+(3\sqrt3)^{2} =36+36\sqrt3+27=63+36\sqrt3
  2. 加上 3^2

    63+363+9=72+36363+36\sqrt3+9=72+36\sqrt3
  3. 提公因数 36(因为 36 容易开方):

    72+363=36(2+3)72+36\sqrt3=36\bigl(2+\sqrt3\bigr)

于是

BC=36(2+3)=62+3.BC=\sqrt{36\bigl(2+\sqrt3\bigr)}=6\sqrt{\,2+\sqrt3\,}.

现在问题变成了:

怎么把 2+3\sqrt{\,2+\sqrt3\,} 这个“根号套根号”拆开?


② “猜想 + 验证” 拆掉双层根号

初中常见技巧:把它猜成 两个简单根号的和

2+3=a+b(ab>0)\sqrt{\,2+\sqrt3\,}= \sqrt{a}+\sqrt{b}\quad(a\ge b>0)

两边平方:

2+3=a+b+2ab.2+\sqrt3 =a+b+2\sqrt{ab}.

于是得到方程组

{a+b=22ab=3ab=34\begin{cases} a+b=2\\ 2\sqrt{ab}=\sqrt3\Longrightarrow ab=\dfrac34 \end{cases}

这两个数字要么是分数,要么都是 1、2、3 旁边的简单数。
最容易想到的一组

a=32,  b=12a=\frac32,\; b=\frac12

检验一下:

32+12=2,32 ⁣× ⁣12=34  (都满足)\frac32+\frac12=2,\quad \frac32\!\times\!\frac12=\frac34\; (\text{都满足})

所以

2+3=32+12=62+22=6+22.\sqrt{\,2+\sqrt3\,}= \sqrt{\frac32}+\sqrt{\frac12} =\frac{\sqrt6}{2}+\frac{\sqrt2}{2} =\frac{\sqrt6+\sqrt2}{2}.

小窍门:如果一时想不到,可以先把 2 写成 1.5+0.51.5+0.5,再看乘积是不是 0.750.75。)


③ 回到 BC

BC=6(6+22)=3(6+2)=36+32.BC =6\Bigl(\frac{\sqrt6+\sqrt2}{2}\Bigr) =3\bigl(\sqrt6+\sqrt2\bigr) =3\sqrt6+3\sqrt2.

④ 求 BE(题目最后要的)

题里已知 CE=26CE=2\sqrt6,而 BE=BCCEBE=BC-CE,于是

BE=(36+32)26=6+32.BE=(3\sqrt6+3\sqrt2)-2\sqrt6=\boxed{\sqrt6+3\sqrt2}.

小结(适合记忆)

  1. 先把所有整数部分、带根号部分都整理到一起。
  2. 能提平方数(如 36)就提出来,外面直接开方。
  3. x+y\sqrt{x+\sqrt y} 这种:
    • 设成 a+b\sqrt a+\sqrt b
    • a+b=xa+b=xab=y4ab=\dfrac{y}{4}
    • 选一对简单数满足这两个条件即可。

这样就不用更高年级才学的“配方法”或“有理化”技巧,初中生就能搞定啦!

مشاركة هذا السؤال والجواب