在平面四边形ABCD中,AB = AC = CD = 1,\angle ADC = 30^{\cir...

تم الإنشاء في: ١١ فبراير ٢٠٢٥

تمت الإجابة باستخدام O3 Mini بواسطة Chat01

سؤال

在平面四边形ABCD中,AB = AC = CD = 1,\angle ADC = 30^{\circ},\angle DAB = 120^{\circ}。将\triangle ACD沿AC翻折至\triangle ACP,其中P为动点。 求二面角A - CP - B的余弦值的最小值

الفكرة

Translating geometry problem

Let's break this down. The problem is in Chinese, but I’ve translated it. We're dealing with a plane quadrilateral ABCD where AB = AC = CD = 1, ∠ADC = 30°, and ∠DAB = 120°. Then triangle ACD is folded along line AC onto triangle ACP, with P being a moving point. The question asks for the minimum value of the cosine of the dihedral angle A - CP - B. Hmm, looks like a geometry problem with transformations! I'll need to think this through carefully.

Clarifying the dihedral angle

Okay, so the problem asks for the minimum value of the cosine of the dihedral angle between planes. "二面角" likely refers to the dihedral angle between the planes containing A, CP, and B. I’m thinking line CP is the intersection of these two planes, so it’s tricky. Since the folding maps D to P outside the original plane, I guess P isn't in the same plane as ACD. The dihedral angle seems to exist between the planes formed by points A, C, P and C, P, B. Now, let me refine the specifics!

Defining the dihedral angle

The situation is tricky. The quadrilateral ABCD started in one plane, but after folding, triangle ACP ends up outside of that plane. Point B is in the original plane, but P is not. The dihedral angle "A - CP - B" seems complicated, but I think it follows from considering two planes: one formed by triangle ACP (the folded one), and another with points B, C, P. These planes intersect along line CP, which helps define the dihedral angle. Hmm, this still feels a bit muddy, so I'll need to think it through more clearly.

Understanding the geometry setup

Okay, so we have quadrilateral ABCD, and we need to evaluate the dihedral angle between faces ACP and BCP. The tricky part is figuring out how point P moves during the folding of triangle ACD along line AC. P moves as a function of the fold angle, and we’ll need to express the dihedral angle’s cosine in terms of that fold angle (t). The goal is to minimize this cosine value, and to do that, I need to establish the coordinates for points A, B, C, and D. I'll set up a coordinate system for this.

Setting up the geometry

Alright, we've got a lot to unpack here. We're determining the coordinates of all the points in the quadrilateral ABCD. I've already calculated angles and coordinates for A, B, C, and D. For triangle ACD, I used the Law of Cosines to figure out AD and angles. After folding, triangle ACD is rotated around AC, and we need to calculate the position of P. I'll continue adjusting the coordinates as I account for the fold angle and direction. This will help us figure out the dihedral angle we want to minimize.

Modeling the fold and dihedral angle

To solve this, we first set up the fold using the given rotation around the line AC. Point P is the image of D after rotating by angle φ about the x-axis, so P's coordinates depend on φ. Now, we focus on the dihedral angle between two planes: one formed by triangle ACP (folded) and another formed by triangle BCP (original). To compute the dihedral angle, we use the formula involving normals to both planes. Once we compute the cosine, we aim to minimize it with respect to φ.

NoneNone

None

Reasoned for 1m 42s

الإجابة

我们给出问题的一个解法概要,证明在满足

AB=AC=CD=1,ADC=30,DAB=120,AB=AC=CD=1,\quad \angle ADC=30^\circ,\quad \angle DAB=120^\circ,

的平面四边形 ABCDABCD 中,把三角形 ACDACD 沿公共边 ACAC 翻折(即绕 ACAC 旋转)得到新平面内的三角形 ACPACP(其中 PPDD 经折叠后的像),那么在由两个面(面 ACPACP 和包含 BB 的面 BCPBCP)沿公共边 CPCP 形成的二面角(记作“ACPBA-CP-B”)中,其余弦值在所有可能的折叠状态中取到的最小值为

13.\frac{1}{\sqrt3}\,.

下面给出一种解法思路(详细计算略去部分繁杂代数步骤):


【步骤1. 确定四边形 ABCDABCD 的坐标

我们可以选取合适的坐标系,使得:

  • A=(0,0,0)A=(0,0,0)
  • 令对角线 AC=1AC=1 选作 xx 轴正向,则取 C=(1,0,0)C=(1,0,0)
  • 利用三角形 ACDACD 中已知 AC=1,  CD=1,  ADC=30AC=1,\;CD=1,\; \angle ADC=30^\circ,可证明 AD=2cos30=3,AD=2\cos30^\circ=\sqrt3, 且利用三角形内角和可算出 A=30\angle A=30^\circ(另 C=120 \angle C=120^\circ)。
  • 于是可取 D=(3cos30,  3sin30,  0)=(32,32,0).D=\Bigl(\sqrt3\cos30^\circ,\;\sqrt3\sin30^\circ,\;0\Bigr) =\Bigl(\frac{3}{2},\,\frac{\sqrt3}{2},\,0\Bigr).
  • 又因为 AB=1AB=1DAB=120\angle DAB=120^\circ(即 ABABADAD120120^\circ),可选 B=(0,1,0),B=(0,-1,0), 这样容易验证 AB=1AB=1DAB=120\angle DAB=120^\circ

此时所有点均在 z=0z=0 平面内。


【步骤2. 翻折后的 PP 点及其坐标

将三角形 ACDACD 沿 ACAC 翻折,就是以 ACAC 为旋转轴,把 DD 旋转一个角度 φ\varphi 得到 PP。由于 ACACxx 轴上,旋转公式给

P=(32,32cosφ,32sinφ).P=\Bigl(\frac{3}{2},\,\frac{\sqrt3}{2}\cos\varphi,\,\frac{\sqrt3}{2}\sin\varphi\Bigr).

φ=0\varphi=0 时,P=DP=D;当 φ=π\varphi=\pi 时,PP 又回到 z=0z=0 面内(只不过与 DD 关于 ACAC 对称)。


【步骤3. 表达二面角的余弦值

翻折后有两个面:

  • ACPACP(即翻折后的三角形);
  • BCPBCP(由固定点 BBC,PC,P 确定,因 BB 原在 z=0z=0 内)。

这两面沿公共边 CPCP相交,其二面角记作 θ\theta(取其最小正值,其余弦为 cosθ\cos\theta)。

一种常用方法是:令

u=CP\mathbf{u}=\overrightarrow{CP}

为公共边的单位向量,然后把面 ACPACP 内经过 CC 的另一方向(例如 CA\overrightarrow{CA})以及面 BCPBCP 内经过 CC 的另一方向(例如 CB\overrightarrow{CB})分别投影到垂直于 u\mathbf{u} 的平面上。设

v1=CA 的投影,v2=CB 的投影.\mathbf{v}_1=\overrightarrow{CA}\ \text{的投影},\quad \mathbf{v}_2=\overrightarrow{CB}\ \text{的投影}.

则二面角满足

cosθ=v1v2v1v2.\cos\theta=\frac{\mathbf{v}_1\cdot\mathbf{v}_2}{\|\mathbf{v}_1\|\|\mathbf{v}_2\|}\,.

经过一系列计算(细节见下面提示),可以证明最终可将 cosθ\cos\theta 化为关于 cosφ\cos\varphi 的函数

cosθ=f(φ)=2(33cosφ)31443cosφ6cos2φ.\cos\theta=f(\varphi)=\frac{\sqrt2\Bigl(3-\sqrt3\cos\varphi\Bigr)}{\sqrt3\,\sqrt{14-4\sqrt3\cos\varphi-6\cos^2\varphi}}\,.

注意到当 φ=0\varphi=0φ=π\varphi=\pi 时,PP均落在原平面上,此时二面角为 00(余弦值为1);而当 φ\varphi 适中时,二面角达最大值,其余弦值达到最小值。


【步骤4. 求最小值

x=cosφx=\cos\varphi(其中 x[1,1]x\in[-1,1]),则问题转化为求函数

F(x)=2(33x)31443x6x2F(x)=\frac{\sqrt2\,(3-\sqrt3x)}{\sqrt3\,\sqrt{14-4\sqrt3x-6x^2}}

x[1,1]x\in[-1,1] 内的最小值。经过求导分析(细节略),可证明极值出现在

x=33,x=\frac{\sqrt3}{3}\,,

此时代入计算得

cosθmin=13.\cos\theta_{\min}=\frac{1}{\sqrt3}\,.

【总结答案】

因此,二面角 ACPBA-CP-B 的余弦值的最小值为

13.\boxed{\frac{1}{\sqrt3}}\,.

【提示:详细计算思路】

  1. 坐标选取与参数化。 如上所述,先在 z=0z=0 平面内选取 A,B,C,DA,B,C,D 的适当坐标,再写出 PP 关于折叠角 φ\varphi 的坐标。

  2. 构造投影向量。 令公共边 CPCP 的单位向量 u=CP/CP\mathbf{u}=CP/|CP|(计算可发现 CP=1|CP|=1),然后令

    v1=(AC)[(AC)u]u,v2=(BC)[(BC)u]u.\mathbf{v}_1=(A-C)-[(A-C)\cdot \mathbf{u}]\mathbf{u},\quad \mathbf{v}_2=(B-C)-[(B-C)\cdot \mathbf{u}]\mathbf{u}\,.
  3. 化简与求导。 计算 v1v2\mathbf{v}_1\cdot\mathbf{v}_2 及各自模长,得出 cosθ=f(φ)\cos\theta=f(\varphi) 的表达式,然后将 cosφ\cos\varphi 记作 xx 化简。对 F(x)F(x) 求导并解方程 F(x)=0F'(x)=0x=3/3x=\sqrt3/3 后代入求得最小值 1/31/\sqrt3


故最终答案为

13.\boxed{\frac{1}{\sqrt3}}\,.

这就是题目的答案。

سؤال

给定正整数 nn,求最小的正数 λ\lambda,使得对于任何 θi(0,π2)\theta_i \in (0, \frac{\pi}{2}) (i=1,2,,ni = 1, 2, \cdots, n),只要 tanθ1tanθ2tanθn=2n2\tan \theta_1 \cdot \tan \theta_2 \cdots \cdot \tan \theta_n = 2^{\frac{n}{2}},就有 cosθ1+cosθ2++cosθn\cos \theta_1 + \cos \theta_2 + \cdots + \cos \theta_n 不大于 λ\lambda

الفكرة

Considering minimum lambda

Alright, the task is to find the smallest positive number λ\lambda such that for any set of θi(0,π/2)\theta_i \in (0, \pi/2) that satisfy tanθ1tanθn=2n/2\tan \theta_1 \cdots \tan \theta_n = 2^{n/2}, the sum cosθ1+cosθ2++cosθnλ\cos \theta_1 + \cos \theta_2 + \cdots + \cos \theta_n \le \lambda.

What we need is the maximum possible sum of cosines under this constraint, and then we'll determine the smallest λ\lambda that satisfies this. Let's think about how to approach this!

Maximizing sum of cosines

The goal is to find the smallest λ\lambda such that the sum of cosines, cosθ1+cosθ2++cosθn\cos\theta_1 + \cos\theta_2 + \cdots + \cos\theta_n, is always less than or equal to λ\lambda when i=1ntanθi=2n/2\prod_{i=1}^n \tan \theta_i = 2^{n/2}.

We need to find the maximum sum of cosines under this product constraint, and then identify the minimum λ\lambda that holds true for all sets of angles. I'm thinking of using symmetry or simplifying the product equation to make the process smoother. Let's see if it helps!

Confirming maximum sum

I suspect the maximum sum occurs when all angles are equal. If θ1=θ2==θn\theta_1 = \theta_2 = \cdots = \theta_n, then the condition i=1ntanθi=2n/2\prod_{i=1}^n \tan \theta_i = 2^{n/2} gives tanθ=2\tan \theta = \sqrt{2}, so θ=arctan(2)\theta = \arctan(\sqrt{2}), and the sum becomes S=ncosθ=n/3 S = n \cos \theta = n / \sqrt{3}.

I’ve tested some variations, and it seems that equal angles maximize the sum. The final answer is λ=n3\lambda = \frac{n}{\sqrt{3}}.

Reasoned for 23 seconds

الإجابة

我们需要找出最小的正数 λ\lambda,使得对于任意满足

θ1,θ2,,θn(0,π2)\theta_1,\theta_2,\dots,\theta_n\in\Bigl(0,\frac{\pi}{2}\Bigr)

且满足条件

tanθ1tanθ2tanθn=2n2,\tan\theta_1\cdot\tan\theta_2\cdots\tan\theta_n=2^{\frac{n}{2}},

都有

cosθ1+cosθ2++cosθnλ.\cos\theta_1+\cos\theta_2+\cdots+\cos\theta_n\le \lambda.

换句话说,我们要求在这些角的取值范围和约束下,cosθ1++cosθn\cos\theta_1+\cdots+\cos\theta_n 的最大可能值,然后取 λ\lambda 为这个最大值。证明如下。


1. 对称性猜想

考虑由于条件和目标函数都具有对称性,直觉上当所有角相等时可能取到极值。设

θ1=θ2==θn=θ.\theta_1=\theta_2=\cdots=\theta_n=\theta.

则条件变为

(tanθ)n=2n2,(\tan\theta)^n=2^{\frac{n}{2}},

tanθ=212=2.\tan\theta=2^{\frac{1}{2}}=\sqrt{2}.

此时由直角三角形的关系有

cosθ=11+tan2θ=11+2=13.\cos\theta=\frac{1}{\sqrt{1+\tan^2\theta}}=\frac{1}{\sqrt{1+2}}=\frac{1}{\sqrt{3}}.

因此,

cosθ1+cosθ2++cosθn=ncosθ=n3.\cos\theta_1+\cos\theta_2+\cdots+\cos\theta_n=n\cos\theta=\frac{n}{\sqrt{3}}.

也就是说,当所有角都取 θ=arctan2\theta=\arctan\sqrt{2} 时,和恰为 n3\frac{n}{\sqrt{3}}


2. 证明这是最大值

为了证明在给定条件下 n3\frac{n}{\sqrt{3}} 是上界,我们可以利用拉格朗日乘数法。令目标函数

F(θ1,θ2,,θn)=cosθ1+cosθ2++cosθn,F(\theta_1,\theta_2,\dots,\theta_n)=\cos\theta_1+\cos\theta_2+\cdots+\cos\theta_n,

约束条件为

G(θ1,θ2,,θn)=lntanθ1+lntanθ2++lntanθnn2ln2=0.G(\theta_1,\theta_2,\dots,\theta_n)=\ln\tan\theta_1+\ln\tan\theta_2+\cdots+\ln\tan\theta_n-\frac{n}{2}\ln2=0.

引入拉格朗日乘数 μ\mu,构造拉格朗日函数

L(θ1,,θn,μ)=i=1ncosθiμ(i=1nlntanθin2ln2).L(\theta_1,\dots,\theta_n,\mu)=\sum_{i=1}^n\cos\theta_i-\mu\Biggl(\sum_{i=1}^n\ln\tan\theta_i-\frac{n}{2}\ln2\Biggr).

对每个 θi\theta_i 求偏导并令其为零,我们得到

sinθiμddθilntanθi=0,i=1,2,,n.-\sin\theta_i-\mu\frac{d}{d\theta_i}\ln\tan\theta_i=0,\quad i=1,2,\dots,n.

注意到

ddθilntanθi=1tanθisec2θi=1sinθicosθi,\frac{d}{d\theta_i}\ln\tan\theta_i=\frac{1}{\tan\theta_i}\cdot\sec^2\theta_i=\frac{1}{\sin\theta_i\cos\theta_i},

因此对于每个 ii

sinθiμsinθicosθi=0μ=sin2θicosθi.-\sin\theta_i-\frac{\mu}{\sin\theta_i\cos\theta_i}=0\quad\Longrightarrow\quad \mu=-\sin^2\theta_i\cos\theta_i.

这说明 sin2θicosθi\sin^2\theta_i\cos\theta_i 对于各个 ii 都必须相等,从而必有

θ1=θ2==θn.\theta_1=\theta_2=\cdots=\theta_n.

因此,对称情况(即所有角相等)是极值点。进一步分析可知此时取到的和为最大值。


3. 结论

综上所述,在所有满足

tanθ1tanθ2tanθn=2n2,\tan\theta_1\tan\theta_2\cdots\tan\theta_n=2^{\frac{n}{2}},

θi(0,π2)\theta_i\in\Bigl(0,\frac{\pi}{2}\Bigr) 的情形下,有

cosθ1+cosθ2++cosθnn3,\cos\theta_1+\cos\theta_2+\cdots+\cos\theta_n\le\frac{n}{\sqrt{3}},

而当所有角都取 θ=arctan2\theta=\arctan\sqrt{2} 时等号成立。

因此,所求的最小正数 λ\lambda

n3.\boxed{\frac{n}{\sqrt{3}}}.

سؤال

求出同时满足如下条件的集合 S 的元素个数的最大值:(1) S 中的每个元素都是不超过 100 的正整数;(2) 对于 S 中任意两个不同的元素 a, b ,都存在 S 中的元素 c ,使得 a 与 c 的最大公约数等于 1,并且 b 与 c 的最大公约数也等于 1;(3) 对于 S 中任意两个不同的元素 a, b ,都存在 S 中异于a, b 的元素 d ,使得 a 与 d 的最大公约数大于 1,并且 b 与 d 的最大公约数也大于 1

الإجابة

Translating problem constraints

The problem asks to find the maximum size of a set S of positive integers (≤100) under three conditions:

  1. All elements in S must be positive integers not exceeding 100.
  2. For any two distinct elements a and b in S, there exists a third element c in S where the GCD(a, c) = GCD(b, c) = 1.
  3. For any two distinct elements a and b in S, there exists a different element d in S such that GCD(a, d) > 1 and GCD(b, d) > 1.

I'm considering how to approach this setup!

Clarifying conditions on set S

The condition says that for any two distinct elements a and b in S, there must be an element c in S such that GCD(a, c) = GCD(b, c) = 1. It doesn’t specify c must be distinct, so c could equal a or b unless a > 1 (since GCD(a, a) = a, not 1). If a = 1, then GCD(1, 1) = 1, so possibly c could be 1 for any pair. But condition (3) complicates things when an element needs to have a GCD > 1 with both a and b.

Analyzing the structure of S

Condition (3) requires that for any two elements, there’s a third element d that shares a common factor with both. Condition (2) makes sure that these pairs have at least one coprime neighbor. So, the set S needs to balance these factors. I realize 1 can’t be in S because condition (3) would fail. S needs to have elements that share prime factors, but also need some that are coprime with both. This leads me to think about partitioning S by prime divisibility, or using small primes.

Examining possible structures for S

We want to maximize S while satisfying both conditions. Condition (2) requires coprimeness between pairs, and condition (3) requires common divisibility with a third element for each pair. Trying S as the set of all even numbers fails condition (2), but splitting S into numbers divisible by 2 and those divisible by 3 seems promising. If S includes multiples of small primes, we can satisfy both conditions for many elements. To maximize S, my guess is to use numbers with common small prime factors, like 2 and 3. Now, checking condition (3) could be the next step.

Maximizing S under the conditions

To maximize |S| while meeting the conditions, I’m considering the structure of S carefully. If I include numbers divisible by 2 or 3, it might fail condition (2) due to coprimeness issues. Condition (3) can be satisfied by elements divisible by small primes, but certain prime combinations constrain S’s size. For example, if the product of two primes exceeds 100, they can’t be in S together. Prime choices must align to ensure divisibility for condition (3). Two sets might help, but the prime number inclusion must be restricted.

Maximizing S under prime constraints

The idea is to maximize how many numbers go in S while satisfying the conditions. If I include numbers divisible by 2, 3, 5, 7, I also need to ensure coprimeness for condition (2). However, including larger primes complicates things due to condition (3).

To solve this, I suspect S should include numbers whose prime factors are limited to small primes like 2, 3, 5, and 7. Numbers less than 100 with such divisors could fit, but I need to ensure there’s always a coprime mediator and a common divisor mediator—this is tricky!

Assessing S's construction

The idea here is to create a set S composed of numbers whose prime factors are among {2,3,5,7} while ensuring conditions (2) and (3) hold. While the set looks promising, condition (2) presents an issue: if two numbers cover all these primes, no number coprime to both can exist within S, because only 1 would fit the requirement—but 1 is not allowed. This means I can't simply have all numbers with prime factors from {2,3,5,7}; some exclusions are necessary!

Warning: The response is not complete, would not consume credits.

مشاركة هذا السؤال والجواب