柯西不等式最大值

تم الإنشاء في: ١٣ يناير ٢٠٢٥

تمت الإجابة باستخدام O1 بواسطة Chat01

سؤال

已知2x+3y=4
求8/x+27/y的最大值
用柯西不等式求解

الفكرة

Setting up the equation

I’m working on maximizing 8/x+27/y8/x + 27/y under the constraint 2x+3y=42x + 3y = 4. Assuming x>0x > 0 and y>0y > 0, this ensures the expression stays positive and well-defined.

Analyzing the function

As xx nears zero, the expression 8/x+27/y8/x + 27/y becomes infinitely large. Since the constraints are x>0x > 0 and y>0y > 0, a maximum may not exist.

Taking a closer look

I'm analyzing the situation using the Cauchy-Schwarz inequality to handle the constraint 2x+3y=42x + 3y = 4, ensuring xx and yy stay positive and the expression remains finite.

Examining wider constraints

OK, let me see. I’m considering if there might be extra restrictions on xx and yy, like them being negative, which could impact the maximum of 8/x+27/y8/x + 27/y.

Examining finite constraints

No finite maximum exists for 8/x+27/y8/x + 27/y. Considering xx and yy as real numbers without sign constraints, I’ll differentiate to find potential maximum values.

Taking a closer look

I’m differentiating f(x)=8/x+81/(42x)f(x) = 8/x + 81/(4-2x) with respect to xx, excluding x=0x = 0 and x=2x = 2, to identify critical points where the derivative equals zero.

Applying the quadratic formula

I’m solving for xx by equating and simplifying the derivative f(x)f'(x) to zero, using the quadratic formula to find x=8/13x = 8/13 or x=1.6x = -1.6.

Confirming the solution

I’m verifying that x=8/13x = 8/13 and y=12/13y = 12/13 satisfy the constraint 2x+3y=42x + 3y = 4, and calculating the expression 8/x+27/y8/x + 27/y to ensure the calculated value is correct.

Confirming the outcome

OK, let me confirm, x=1.6x = -1.6 gives a negative result. The maximum value of 8/x+27/y8/x + 27/y comes from x=8/13x = 8/13 and y=12/13y = 12/13, totaling 42.25.

Noticing the contradiction

It's interesting to see that 8/x+27/y8/x + 27/y is unbounded when xx or yy approach zero. The question might need reconsideration or domain constraints adjustments.

Revisiting constraints

I'm realizing the question might require using the Cauchy-Schwarz inequality to pinpoint the minimum of 8/x+27/y8/x + 27/y under 2x+3y=42x + 3y = 4, with xx and yy both positive.

Analyzing the function

Interestingly enough, the expression 8/x+27/y8/x + 27/y can grow indefinitely as xx or yy approach zero. The maximum of this function with both variables positive is unbounded.

Pinpointing the optimal value

The function 8/x+27/y8/x + 27/y lacks an upper bound as xx or yy approach zero, suggesting that the critical point 8/138/13 and y=12/13y = 12/13 is possibly the minimum.

Breaking down Cauchy-Schwarz

I’m working through the Cauchy-Schwarz inequality, adjusting it to capture the constraint 2x+3y=42x + 3y = 4. This helps identify that the minimum of 8/x+27/y8/x + 27/y is 42.25.

Evaluating constraints

I’m exploring the Cauchy–Schwarz inequality and confirming the minimum value of 8/x+27/y8/x + 27/y as 42.25, with the function being unbounded above as xx or yy approach zero.

Reaching conclusions

I'm concluding that the function 8/x+27/y8/x + 27/y is unbounded as xx or yy approach zero, suggesting the question might be misstated or focused on the minimum value.

Pulling together

OK, I’m working through the infinite unboundness of 8/x+27/y8/x + 27/y as xx or yy approach zero, suggesting the question might aim to pinpoint the minimum value.

Confirming the unbounded nature

I’m concluding that 8/x+27/y8/x + 27/y can grow without limit as xx or yy approach zero, indicating an unbounded function and possibly an error in the question.

Confirming the outcome

Interestingly enough, using the Cauchy-Schwarz inequality, I verified that 8/x+27/y8/x + 27/y attains a minimum of 42.25. As xx or yy approach zero, the function is unbounded above.

Thought about 柯西不等式应用,持续 1m 5s

الإجابة

先澄清一个要点:在通常的高中/大学竞赛或练习题背景下,若题目给出线性约束

2x+3y  =  42x + 3y \;=\; 4

并要求极大化

8x  +  27y,\dfrac{8}{x} \;+\;\dfrac{27}{y},

往往还会隐含「x>0x>0y>0y>0」这样的条件(使得分母不为零、表达式可正则讨论)。但一旦 x,y>0x,y>0,你会发现:

  • x0+x \to 0^+ 时,由于 2x+3y=42x + 3y = 4,可得 y=43y = \tfrac{4}{3},这时 8x+\tfrac{8}{x} \to +\infty
  • y0+y \to 0^+ 时,类似地 x=2x = 2,这时 27y+\tfrac{27}{y} \to +\infty

因此

8x+27y\frac{8}{x} + \frac{27}{y}

在可行域(x>0,y>0x>0,\,y>0)下其实是「没有上界」的,也就是说它可以无限大,不存在有限的“最大值”。如果题目文字的确是“求最大值”,那么严格来说答案应是:「此表达式在所给条件下无上界,最大值为 ++\infty」。


常见的“柯西不等式”套路其实是在求下界

很多同学见到“用柯西不等式”会想到去套

(8x+27y)(2x+3y)    (8x2x  +  27y3y)2\bigl(\tfrac{8}{x} + \tfrac{27}{y}\bigr)\,\bigl(2x + 3y\bigr) \; \ge \; \bigl(\sqrt{\tfrac{8}{x}\cdot 2x} \;+\; \sqrt{\tfrac{27}{y}\cdot 3y}\bigr)^2

从而推得

(8x+27y)4        (16+81)2  =  (4+9)2  =  169,\bigl(\tfrac{8}{x} + \tfrac{27}{y}\bigr) \cdot 4 \;\;\ge\;\; \bigl(\sqrt{16} + \sqrt{81}\bigr)^2 \;=\; (4 + 9)^2 \;=\; 169,

8x+27y        1694.\tfrac{8}{x} + \tfrac{27}{y} \;\;\ge\;\; \dfrac{169}{4}.

这个不等式给出的是下界(最小值),而不是上界(最大值)。进一步结合求导或配合“等号条件”可以验证,当且仅当

8x  /  27y  =  2x3y\sqrt{\dfrac{8}{x}}\;\big/\;\sqrt{\dfrac{27}{y}} \;=\; \sqrt{\dfrac{2x}{3y}}

时取等号,解得

x  =  813,y  =  1213,x \;=\;\dfrac{8}{13}, \quad y \;=\;\dfrac{12}{13},

并且此时

8x+27y  =  1694  =  42.25.\tfrac{8}{x} + \tfrac{27}{y} \;=\; \dfrac{169}{4} \;=\; 42.25.

也就是说,在 x,y>0x,y>0 并满足 2x+3y=42x + 3y = 4 的所有可行对 (x,y)(x,y) 里,8x+27y\tfrac{8}{x} + \tfrac{27}{y}最小值169/4169/4。但它可以通过令 xxyy 趋近于 0 而变得无限大,故无最大值


小结

  1. 若题意真的是“求最大值”,在典型的「x,y>0x,y>02x+3y=42x + 3y = 4」约束下,8x+27y\tfrac{8}{x} + \tfrac{27}{y}++\infty 无上界,所以答案是「最大值不存在(或为 ++\infty)」。

  2. 若其实想要用柯西不等式“求值”,常见的是找它的最小值。用上述柯西或“配方”方法,很容易得到最小值是

min(8x+27y)  =  1694,\min \Bigl(\tfrac{8}{x} + \tfrac{27}{y}\Bigr) \;=\; \dfrac{169}{4},

并在 (813,1213)\bigl(\tfrac{8}{13},\,\tfrac{12}{13}\bigr) 处取到。

很多练习题其实是想让你证明

8x+27y        1694,\tfrac{8}{x} + \tfrac{27}{y} \;\;\ge\;\; \dfrac{169}{4},

而不小心在措辞上写成“最大值”,需要分辨清楚题目的真实意图。若严格按字面意思回答,那么“最大值”确实是不存在的(无穷大)。如果你在课本或试卷里看到类似用柯西不等式推到 169/4,然后命题说“由此可见其最小值是 169/4”,这才是通常出题的初衷。


结论:

  • 在正数范围内,本题所求 8x+27y\frac{8}{x} + \frac{27}{y} 没有有限的最大值,能够趋向 ++\infty
  • 如果题目其实想问下界(最小值),则答案是 1694\displaystyle \frac{169}{4}

مشاركة هذا السؤال والجواب